EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Quantitative energy dispersive X-ray spectroscopy on thin SiGe layers

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Spectromicroscopies and analytical microscopy (electrons and photons, experiment and theory)

Presentation Form: Poster

Corresponding Email:

Markus Andreas Schubert (1), Peter Zaumseil (1), Ioan Costina (1), Holger Rücker (1)

1. IHP, Frankfurt (Oder), Allemagne

Keywords: EDX, SiGe, STEM

The precise measurement of Ge content is of utmost importance in SiGe technology. Analytical methods like X-ray diffraction (XRD) or secondary ion mass spectrometry (SIMS) allow the SiGe stoichiometry measurement in structures larger than 100 µm. However, for SiGe heterojunction bipolar transistors (HBT), Ge profiles in areas of typical transistor dimensions of about 100 nm are of interest.  (Scanning) transmission electron microscopy ((S)TEM) in combination with energy dispersive X-Ray spectroscopy (EDX) or electron energy loss spectroscopy (EELS) is one of the very few suitable methods for this purpose.

Here, we present an approach for measuring Ge profiles in small areas with a lateral resolution of about 5 nm using the Cliff-Lorimer method for quantification of EDX data of thin TEM samples and a calibration of the Cliff-Lorimer factors to Ge profiles measured by XRD in large areas. We have investigated thin SiGe layers with thicknesses of about 20 nm and Ge content of about 30 at%. The Ge content was proofed by XRD as well. For EDX analysis, we have used a TEM FEI Tecnai Osiris operated at 200 kV in STEM mode. The EDX quantification was performed with Cliff-Lorimer method using Esprit-Software from Bruker.  Measurements were taken on TEM sample with different thicknesses. The sample thicknesses were evaluated by EELS log-ratio method in silicon area close to the SiGe-layer [1]. Using this method, the specimen thickness is given in inelastic mean free path (mfp) units. The Cliff-Lorimer method is widely used for quantification of EDX data of thin TEM samples. However, there is an uncertainty in the Cliff-Lorimer factors for standard free measurements and the Cliff-Lorimer method neglects any absorption effects which may become important for thicker TEM samples. Therefore it is necessary to proof the accuracy of quantification by using calibration samples with known Ge concentration.   

Figure 1 shows bright field STEM images of a Si1-xGex layer with x=0.305 (a) and a SiGe HBT (b). Figure 2 shows Ge line profiles of SiGe layer from figure 1a quantified using the K edges of Si and Ge measured at different TEM sample thicknesses. The obtained Ge concentration does not directly depend on sample thickness. However for very thick samples with a thickness of 2.73 mfp or 4.17 mfp, the apparent Ge concentration is clearly reduced. It is possible to explain the lowered concentration of very thick samples by stray radiation of surrounding Si and limited lateral resolution. Figure 3a shows the lateral resolution which was determined from line profiles using the method suggested by Williams and Carter in [2]. Points with concentration of 10 % and 90 % of the maximum concentration were measured and the distance between these points is multiplied by a factor of 1.8. The results from figure 3a and figure 2 clearly show that the sample thicknesses in the range 0.5 mfp to 1.0 mfp are a good compromise between lateral resolution and adequate signal-to-noise ratio. However, even for usual sample thicknesses of 0.45 mfp or 0.77 mfp, we have obtained a Ge concentration above 30.5 at% for the quantification with Ge K edge using a Cliff-Lorimer factor of 2.386 and a slightly lower concentration for the quantification with Ge L edge.  This suggests that an adjustment of Cliff-Lorimer factors of Ge K edge and L edge for accurate quantified results of Ge concentration in SiGe samples is necessary. By using an adjusted Cliff-Lorimer factor of 2.2 for Ge K edge and sample thickness below 1.0 mfp an error below ±10 % and a resolution of about 5 nm is achieved. Figure 3b shows a Ge line profile measured on SiGe HBT from figure 1b using EDX and quantified with adjusted Cliff-Lorimer factor.

 

1. T. Malis, S.C. Cheng, and R.F. Egerton, J. Electron. Microsc. Tech. 8, 193-200, 1988

2. D.B. Williams and C.B. Carter, Plenum Press 1996, page 626

Figures:

Figure 1. a) Bright field STEM image of Si1-xGex layer with x=0.305 and b) bright field STEM image of SiGe HBT with about 10 nm thick SiGe base layer.

Figure 2. Ge line profiles of Si1-xGex layer with x=0.305 measured using EDX at different TEM sample thicknesses and quantified with Si and Ge K edges.

Figure 3. a) Lateral resolution determined from measurement results of figure 2 and b) Ge line profile measured on SiGe HBT of figure 1b using EDX and corrected Cliff-Lorimer factor of 2.2 for Ge K edge.

To cite this abstract:

Markus Andreas Schubert, Peter Zaumseil, Ioan Costina, Holger Rücker; Quantitative energy dispersive X-ray spectroscopy on thin SiGe layers. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/quantitative-energy-dispersive-x-ray-spectroscopy-on-thin-sige-layers/. Accessed: December 2, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/quantitative-energy-dispersive-x-ray-spectroscopy-on-thin-sige-layers/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley