EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Mapping electrostatic potentials across the p-n junction in GaAs nanowires by off-axis electron holography

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Phase Microscopies

Presentation Form: Poster

Corresponding Email:

Elisabetta Maria Fiordaliso (1), Zoltan Imre Balogh (1), Takeshi Kasama (1), Ray LaPierre (2), Martin Aagesen (3)

1. Center for Electron Nanoscopy, Technical University of Denmark, Lyngby, Danemark 2. Department of Engineering Physics, McMaster University, Ontario, Canada 3. Gasp Solar ApS, Copenhagen, Danemark

Keywords: Electron holography, GaAS, nanowires, phase map

The development of III−V materials on Si platforms, with the aim of reducing production costs while achieving high conversion efficiency, has been a continuing area of photovoltaic research in the last decades [1,2]. This process is challenging due to large lattice mismatches, the polar non-polar interfaces and the differences in thermal expansion coefficients. The use of III–V nanowires (NWs) provides a novel method of integrating III-V materials with Si, which avoids dislocations [3]. However the control of other parameters, such as vertical yield in a patterned array, crystal phase, dopant concentrations and electrostatic potential distribution, become challenging.

The electrical performance of a semiconductor device relies strongly on how precisely the electrostatic potentials are distributed across the active region. An accurate measurement of this potential distribution is of vital interest to the semiconductor industry. The technique of off-axis electron holography in the transmission electron microscope (TEM) is a powerful tool for fulfilling the required accuracy in mapping electrostatic potentials [4]. Here, we present electron holography measurements from single GaAs core-shell nanowires with a p-n junction, grown on a Si (1 1 1) substrate.

The Ga-assisted vapor–liquid–solid (VLS) growth mechanism on a silicon substrate was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. A cross-sectional specimen for off-axis electron holography was prepared perpendicular to the growth direction of the NW using focused ion beam milling (FIB) and the in-situ lift-out technique in an FEI Helios Dualbeam FIB/SEM, equipped with a micromanipulator. Holograms were acquired at 120 kV using an FEI Titan 80-300ST TEM, equipped with a rotatable Möllenstedt biprism. The thickness of the specimen was measured to be around 280 nm by convergent beam electron diffraction (CBED).

Fig. 1 shows the reconstructed phase and amplitude from the hologram of the cross-sectional specimen. A core-shell structure is observed, with the core being p-type and the shell being n-type. The phase shift across the p-n junction is close to 1 radian, corresponding to a built-in potential of 0.4 V, as shown in Fig.2. The potential variation measured by holography is used to quantify the actual doping densities in the n-type layer and p-type layer of the NW. This holography measurement indicates that the active dopant concentrations are lower than nominal values, causing a low built-in potential. A greater control on the dopant concentration and distribution is required in order to achieve a higher efficiency of the NW solar cells.

 

 

[1] Bolkhovityanov, Y. B. and Pchelyakov, O.P., Physics-Uspekhi (2008), 51, 437-456.

 

[2] Jain N., and Hudait M. K., Energy Harvesting Syst. (2014), 1, 121–145.

 

[3] Kavanagh, K. L. Semicond. Sci. Techn. (2010), 25(2), 024006-024013.

 

[4] Yazdi, S., Berg, A., Borgström, M. T., Kasama, T., Beleggia, M., Samuelson, L., & Wagner, J. B. (2015) Small, 11(22), 2687-2695.

Figures:

Fig.1 (a) Reconstructed phase and (b) amplitude images of the GaAs NW cross-sectional specimen.

Fig.1 (a) Phase and (b) built-in potential variation across the p-n junction.

To cite this abstract:

Elisabetta Maria Fiordaliso, Zoltan Imre Balogh, Takeshi Kasama, Ray LaPierre, Martin Aagesen; Mapping electrostatic potentials across the p-n junction in GaAs nanowires by off-axis electron holography. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/mapping-electrostatic-potentials-across-the-p-n-junction-in-gaas-nanowires-by-off-axis-electron-holography/. Accessed: December 3, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/mapping-electrostatic-potentials-across-the-p-n-junction-in-gaas-nanowires-by-off-axis-electron-holography/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley