EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Determination of elemental ratio in an atomic column by STEM-EELS

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Spectromicroscopies and analytical microscopy (electrons and photons, experiment and theory)

Presentation Form: Oral Presentation

Corresponding Email:

Mitsutaka Haruta (1), Yoshiteru Hosaka (1), Noriya Ichikawa (1), Takashi Saito (1), Yuichi Shimakawa (1), Hiroki Kurata (1)

1. ICR, Kyoto University, Kyoto, Japon

Keywords: EELS, quantitative analysis, STEM

The elemental signals do not necessarily localize at atomic-column positions because the spatial resolution of an EELS signal is constrained by the delocalization of inelastic scattering and electron channeling process. These complexities make it difficult to perform quantitative analysis with atomic resolution. When we estimate the exact value of elemental ratio with atomic scale, full quantum mechanical simulations combined with experimental result are necessary. On the other hand, if there is a criterion about accuracy of experimental result about elemental ratio for an atomic column without simulation, it would be very useful. 

In this study, atomic-resolution quantification of the elemental ratio of Fe to Mn at octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 (Fig. 1) is demonstrated using STEM-EELS. It is known that Fe and Mn ions are nearly all ordered but not fully ordered, i.e., a small number of Fe and Mn ions reside in octahedral and tetrahedral sites, respectively. It was found that a considerable oversampling of the spectral imaging data yields a spatially resolved area that very nearly reflects atomic resolution (~1.2 Å in radius) for Fe and Mn L2,3-edge (Fig. 2). And the average relative compositions of Fe to Mn within the region were 17.7 to 82.3 ± 13.1 in octahedral sites and 80.7 to 19.3 ± 9.9 in tetrahedral sites. The actual atomic ratio was estimated by calculating the mixing of signals from nearest-neighbor columns using simple simulation based on multislice technique. It was concluded that the ratio of Fe to Mn was 14 to 86 at octahedral sites. It agrees well with the previous neutron diffraction experiment (14.4 to 85.6) which can correctly decide such information for bulk sample [1]. On the other hand, the experimental value and the estimation value from tetrahedral site have relatively large error compare with the result of neutron diffraction experiment (92.2 to 7.8). This means that an experimental oversampling SI data of Fe and Mn L2,3-edge from octahedral site in perovskite-like structure is probably interpreted with an uncertainty of approximately 10% without simulation.

[1] Hosaka, Y.; Ichikawa, N.; Saito, T.; Haruta, M.; Kimoto, K.; Kurata, H.; Shimakawa, Y. Bull. Chem. Soc. Jpn. 2015, 88, 657-661

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 26706015, 19GS0207 and 22740227. It is also supported by a grant for the Joint Project of Chemical Synthesis Core Research Institutions from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by the Japan Science and Technology Agency, CREST.

Figures:

Fig1. Crystal structure of Ca2FeMnO5 along [101] projection

Fig.2 (a) HAADF and (b) Elemental <010> line scans for the Fe L2,3-edge and Mn L2,3-edge. (c) The profile of relative composition of Fe and Mn.

To cite this abstract:

Mitsutaka Haruta, Yoshiteru Hosaka, Noriya Ichikawa, Takashi Saito, Yuichi Shimakawa, Hiroki Kurata; Determination of elemental ratio in an atomic column by STEM-EELS. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/determination-of-elemental-ratio-in-an-atomic-column-by-stem-eels/. Accessed: December 2, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/determination-of-elemental-ratio-in-an-atomic-column-by-stem-eels/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley