EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

CO adsorption on Au(110) and Pd70Au30(110) : an in situ comparative study by environmental STM

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Micro-Nano Lab and dynamic microscopy

Presentation Form: Poster

Corresponding Email:

Marie-Angélique Languille (1, 2), Eric Ehret (1), Francisco José Cadete Santos Aires (1, 3)

1. Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Université de Lyon, UMR5256 CNRS/Université Lyon1, Villeurbanne, France 2. Centre de Recherches sur la Conservation, Muséum National d’Histoire Naturelle, USR 3224 CNRS, Paris, France 3. Laboratory of Catalytic Research, National Research Tomsk State University, Tomsk, Russie

Keywords: Au(110), CO adsorption, Environmental STM, Pd70Au30(110)

Surface structure and catalytic properties of metals are often intimately related. Well known surface structures (or reconstructions) in UHV conditions may evolve under gas pressure to yield new configurations. Scanning tunneling microscopy (STM) yields information on surface morphology and structure down to the atomic level. It is thus a well suited technique to follow in situ surface modifications due to gas environments at relatively high pressures [1].

In PdAu alloys, Au has a strong tendency to segregate to the surface at the thermodynamic equilibrium under UHV conditions. It is indeed the case for the Pd70Au30(110) surface for which the outmost layer is essentially formed by Au (85-90% as determined independently by LEIS, variable kinetic energy XPS and grazing incidence surface XRD). We can thus consider to have a Au surface-layer on top of a bimetallic bulk. In such conditions it is interesting to make a comparative study on how CO adsorption affects the surface structure and morphology both of this Au-terminated bimetallic surface and of a Au(110) surface. We have thus used an environmental STM that can be operated from UHV (<10-9 Torr) to 103 Torr of controlled environments (in this case CO); the study was donne at room temperature (~ 300K). This STM is an Omicron MicroLH slightly modified (gold plating of copper elements and magnets; coating of the piezoelectric tube) so that it is compatible with elevated pressure and variable temperature operation [2].

Under UHV conditions Au(110) presents a (1×2)-missing-row reconstruction whereas Pd70Au30(110) is unrecontructed with a measured surface parameter closer to Au than to Pd. CO only adsorbs on Au(110) for pressures above 10-3 Torr whereas CO adsorbs on Pd70Au30(110) at very low partial pressures (<10-6 Torr) as it was shown by NAP-XPS.

In the range of pressures studied (10-2 Torr – 5 102 Torr) the unreconstructued flat terraces on Pd70Au30(110) become rough at low pressure  and a “rice grain” morphology is observed with typical domain sizes (oriented in the [1 -1 0] direction) around 4 nm and 0.05 nm corrugation that prevails with no specific variation up to 5 102 Torr (Figure 1). Complementary studies performed by NAP-XPS clearly show the segregation of Pd the surface under CO pressure. So the roughening observed by STM (approximately one third of an atomic step in height) is essentiallydue to the diffusion of Pd atoms to the surface.

In the case of Au(110), the evolution of the surface structure and morphology with increasing CO pressure shows different surface structures [3] (Figure 2): under vacuum conditions, the Au(110) surface exhibits a (1×2) reconstruction which yields aligned terraces in the [1 -1 0] direction at a larger scale. CO chemisorption at 0.01 Torr on this surface induces a slow deconstruction of the (1×2) surface leading to a (1×4) structure under 0.1 Torr of CO.At higher pressure (0.5 to 30 Torr) a dramatic restructuring is observed where the terraces aligned in the [1 -1 0] direction under vacuum evolve to yield monoatomic-high islands. Their size subsequently increases with increasing CO pressure [4]. At 100 Torr of CO the surface exhibits a (1×1) structure prior to the new surface structure observed at 5 102 Torr of CO with ~0.05 nm deep holes arranged in a c(4×4) array. Intensity modulations around these holes were also observed.

CO chemisorption induces a strong restructuring of  both “Au” surfaces as it is evidenced by the high resolution in situ environmental STM images. However while the restructuring is limited to a roughning of the surface (due Pd segregation) for the bimetallic crystal, the structure and morphology of the Au-pure crystal surface evolve (through different configurations) as CO pressure increases showing that we have to take into account the dynamics of the surface and thus the evolution of the active sites during reaction.

References

Figures:

Figure 1: (top) Pd70Au30(110) surface roughening durincg CO exposure to CO (0.01 - 500 Torr). (Bottom) details of the surface morphology and (pseudo) structure after roughening.

Figure 2: Evolution of the Au(110) surface morphology and structure unde CO increasing pressure (0.01 - 500 Torr).

To cite this abstract:

Marie-Angélique Languille, Eric Ehret, Francisco José Cadete Santos Aires; CO adsorption on Au(110) and Pd70Au30(110) : an in situ comparative study by environmental STM. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/co-adsorption-on-au110-and-pd70au30110-an-in-situ-comparative-study-by-environmental-stm/. Accessed: December 2, 2023

Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/co-adsorption-on-au110-and-pd70au30110-an-in-situ-comparative-study-by-environmental-stm/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites


The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley