EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Understanding the enhanced ductility of TiAl alloys using a hybrid study of in-situ TEM experiment and molecular dynamics

Abstract number: 4443

Session Code: IM02-158

DOI: 10.1002/9783527808465.EMC2016.4443

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Micro-Nano Lab and dynamic microscopy

Presentation Form: Poster

Corresponding Email: mrbass@kims.re.kr

SEONG-WOONG KIM (1), Seung-Hwa Ryu (2), Young-sang Na (1), Seung-Eon Kim (1)

1. Titanium, Korea Institute of Materials Science, Changwon, Corée du Sud 2. Mechanical Engineering, Korea Advanced Institute of Science and Technology, Deajeon, Corée du Sud

Keywords: deformation, In-situ TEM, molecular dynamics, stacking fault energy, TiAl

An in-situ transmission electron microscopy study was conducted at room temperature in order to understand an underlying mechanism on room temperature ductility of TiAl alloys. Also, melecular dynamics simulation was conducted to calculate the stacking fault energy of TiAl alloys and to show which deformation mode is dominant. From in-situ straining transmission electron microscopy experiments, it was revealed that the crack path and deformation mode is different between the TiAl alloys with/without room temperature ductility. The crack in TiAl alloys having room temperature ductility interacted with lamellae by forming bridging ligaments between the two α2 lamellae and the γ lamellae. In contrast, the cracks in TiAl alloys without room temperature ductility propagated along grain (colony) boundaries showing brittle intergranular fracture. From the quantitative in-situ TEM experiements, it was found that the γ lamellar of TiAl alloys having room temperature ductility was deformed by slip (Fig. 1). However, the γ lamellar of TiAl alloys without room temperature ductility was deformed by deformation twin (Fig. 2). The difference in deformation mode was explained by stacking fault energy of the TiAl alloys which was calculated by molecular dynamics. The TiAl alloy with low stacking fault energy was deformed by deformation twin (Fig. 2) whereas the TiAl alloy with high stacking fault energy was deformed by dislocation slip (Fig. 1). Furthermore, the role of lamellar orientation of tensile direction on deformation behavior was examined using Schmid factor of each orientation.

Finally, we proposed the important microstructural factors to have room temperature ductility of TiAl alloys.

Figures:

Fig. 1. Dark field image of alloy having room temperature ductility taken during in-situ TEM experiment. White arrows are indicating dislocations.

Fig. 2. Dark field image of alloy having no room temperature ductility taken during in-situ TEM experiment. White arrows are indicating deformation twins.

To cite this abstract:

SEONG-WOONG KIM, Seung-Hwa Ryu, Young-sang Na, Seung-Eon Kim; Understanding the enhanced ductility of TiAl alloys using a hybrid study of in-situ TEM experiment and molecular dynamics. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/understanding-the-enhanced-ductility-of-tial-alloys-using-a-hybrid-study-of-in-situ-tem-experiment-and-molecular-dynamics/. Accessed: January 20, 2021
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/understanding-the-enhanced-ductility-of-tial-alloys-using-a-hybrid-study-of-in-situ-tem-experiment-and-molecular-dynamics/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Pixelated STEM detectors: opportunities and challenges
  • Atomic relaxation in ultrathin fcc metal nanowires
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2021 John Wiley & Sons, Inc. All Rights Reserved.
Wiley
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.