EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

The use of Correlation Coefficient maps to enhance visibility of internal structure for nanocrystalline thin foils

Abstract number: 6564

Session Code: IM06-OP121

DOI: 10.1002/9783527808465.EMC2016.6564

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Quantitative Diffraction

Presentation Form: Oral Presentation

Corresponding Email: edgar.rauch@simap.grenoble-inp.fr

Edgar RAUCH (1), Akos KISS (2, 3), Janos LABAR (2)

1. SIMAP, Univ. Grenoble Alpes, CNRS, Grenoble, France 2. Hungarian Academy of Sciences, Research Center for Energy Research, Institute for Technical Physics and Materials Science (MTA EK MFA), Budapest, Hongrie 3. Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, Veszprém, Hongrie

Keywords: automated crystal orientation mapping (ACOM), correlation coefficient map, electron diffraction, Transmission electron microscopy (TEM)

Orientation and phase are routinely determined with the automated ACOM tool developed for Transmission Electron Microscopes [1]. With this attachment, the beam is scanned over the area of interest and all the diffraction patterns are collected and kept in memory for further off-line analysis. The present work concerns a novel approach that makes use of the memorized data to compute a structural image of the sample through a straightforward post-processing algorithm that consists in weighting the similarities between the neighbor diffraction patterns [2].

 

The successive diffraction patterns acquired within a given crystal are anticipated to be nearly identical, while an abrupt change is expected when the beam is crossing a grain or a phase boundary. Plotting the value of a correlation coefficient that compares the intensities of every pixels of the neighbor diffraction patterns produces a contrasted picture in which all structural features that modify the local diffracting conditions are highlighted.

 

Fig. 1 gives a typical example where grain boundaries for a polycrystalline sample are retrieved. Of particular interest is the fact that the grain boundary contrasts are directly related to the boundary inclination. Indeed, the sharp changes in diffraction patterns expected for boundaries parallel to the electron beam are associated to a strong contrast. A weak and extended contrast indicates qualitatively a gradual modification of the diffracting signal as expected for inclined boundaries. Quantitative evaluation needs different processing [3].

 

The correlation coefficient is sensitive to any structural component that modifies the diffracting conditions. This is valid for dislocations, too. Two of them appear in the upper grain in figure 1.

Moreover, the correlation coefficient is less sensitive to non-visibility conditions. This is because it is constructed on the difference between the intensities of all reflections including the faint ones. In particular, if the sample is in a so-called two beam condition, the main reflection g remains unchanged when the beam is crossing a dislocation line whose Burgers vector is normal to g. This reflection will be dominant in the bright field image and the dislocation will not be visible. Being constant, g will not contribute to the correlation coefficient. By contrast faint reflections that always exist in the diffraction pattern – even in two beam conditions – will be affected by the distortion around the defect line. Figure 2 compares the virtual bright-field image and the correlation coefficient map for a deformed ferritic steel sample. The thin foil is slightly bended (less than 2°, mainly from left to right) so that the contrast conditions are not homogeneous in the micrograph and part of the structural information is missing. The correlation coefficient is less sensitive to the exact illumination conditions and consequently additional dislocations appear in the map.

 

 

[1] E.F. Rauch, M. Véron, Mater. Charact. 98 (2014) 1–9.

[2] Á.K. Kiss, E.F. Rauch, J.L. Lábár, Ultramicroscopy 163 (2016) 31–37.

[3] Á K. Kiss E F. Rauch B Pécz J Szívós and J L. Lábár, Microsc Microanal 21(2015) 422–435

Figures:

Figure 1. Virtual Bright-field, orientation map and the corresponding correlation coefficient map for an alumina sample with submicron grains. Note the dislocations appearing in the upper grain (arrows).

Figure 2. Virtual bright field image (a) and correlation coefficient maps (b) of the same area for a deformed low carbon steel sample observed in nearly two-beam conditions. Higher number of dislocations is made visible by correlating the diffraction patterns.

To cite this abstract:

Edgar RAUCH, Akos KISS, Janos LABAR; The use of Correlation Coefficient maps to enhance visibility of internal structure for nanocrystalline thin foils. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/the-use-of-correlation-coefficient-maps-to-enhance-visibility-of-internal-structure-for-nanocrystalline-thin-foils/. Accessed: December 2, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/the-use-of-correlation-coefficient-maps-to-enhance-visibility-of-internal-structure-for-nanocrystalline-thin-foils/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley