EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Synthesis and characterization of dandelion-like ZnS with high antibacterial activity

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Nanoparticles: from synthesis to applications

Presentation Form: Poster

Corresponding Email:

Fangwang Ming (1), Zhoucheng Wang (1)

1. College of Chemistry and Chemical Engineering, Xiamen University, xiamen, Chine

Keywords: biomaterial, characterization, hydrothermal, microstructure, ZnS

    Nanostructure materials have been the subject of widespread research over the past couple of decades. Recent experiments on nanostructure materials have revealed a host of novel physical and chemical properties, which are significantly different from that of the conventional materials. Many workers are devoted to developing new synthesis methods to fabricate materials with novel nanostructures. ZnS, as a vital wide-gap semiconductor, has been extensively investigated due to its outstanding photoelectric effect, high catalytic activity and wide applications. Recently, ZnS nanomaterials with various geometrical shapes such as 1D wire, rod, or 2D sheet, belt and so on, have been prepared using variety of physical or chemical methods [1-2]. Dandelion-like ZnS materials assembled by 2D nanosheets or 1D nanowires are of great interest as they provide extremely large specific surface areas and unique porous microstructure [3]. However, research into the 3D nanostructure ZnS assembled by 1D ZnS nanowires is still less dealt with. What’s more, majority researchers were devoted to photoluminescence and photocatalytic, few of them pay enough attention to the antibacterial activity of ZnS.

    Microbial contamination has become increasing difficult to control owing to the resistance offered by microbes against conventional antimicrobial agents. It is well-know that inorganic nanomaterials, such as TiO2, AgPO3, ZnO, reveal high antibacterial activities [4-5]. To date, only scant information about antibacterial ability of the ZnS has been recorded. In this work, dandelion-like ZnS has been prepared via the method of facile one-pot hydrothermal synthesis. The dandelion-like ZnS was characterized by transmission electron microscope, scanning electron microscope, energy dispersive spectrometer and X-ray diffraction. The results reveal that the surface topographies of the 3D dandelion-like ZnS particles are actually assembled by plenty of interlaced 1D ZnS nanowires. The influence of reaction time, reaction temperature, Zn/S mole ratio and different zinc and sulfur sources to the dandelion-like structure were investigated. The dandelion-like ZnS exhibits superior ability in inhibiting the growth of Escherichia coli, which makes it promising candidate for biological materials. The large specific surface area, porous surface morphology and the releasing of the Zn2+ ions are considered probable causes for the high antibiotic activity of the dandelion-like ZnS.


References

Figures:

Fig. 1. Schematic illustration of the growth of the dandelion-like ZnS.

Fig. 2. (a) TEM and (b) SEM images of the ZnS nanowires; (c) and (d) SEM images of the dandelion-like ZnS.

To cite this abstract:

Fangwang Ming, Zhoucheng Wang; Synthesis and characterization of dandelion-like ZnS with high antibacterial activity. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/synthesis-and-characterization-of-dandelion-like-zns-with-high-antibacterial-activity/. Accessed: December 3, 2023

Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/synthesis-and-characterization-of-dandelion-like-zns-with-high-antibacterial-activity/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites


The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley