EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Structure and genome delivery mechanism of Staphylococcus aureus phage therapy agent phi812-K1 determined by cryo-electron microscopy

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Life Sciences

Topic: Macromolecular assemblies, supra molecular assemblies

Presentation Form: Poster

Corresponding Email:

Jiří Nováček (1), Marta Šiborová (1), Martin Benešík (2), Roman Pantůček (2), Jiří Doškař (2), Pavel Plevka (1)

1. Central European Institute of Technology, Masaryk University, Brno, République tchèque 2. Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, République tchèque

Keywords: bacteriophage, double-layered baseplate, single particle reconstruction, Staphylococcus Aureas

Worldwide occurrence of multidrug-resistant pathogenic bacteria has increased interest in alternative treatments including bacteriophage-based therapy. Bacteriophage phi812 belongs to genus Twort-like virus, subfamily Spounavirinae and can infect at least 75% of Methicilin-resitant S. aureus strains (MRSA) and 95% of Methicillin-sensitive S. aureus strains. We have employed cryo-electron microscopy to determine structure and  genome delivery mechanism for polyvalent staphylococcal backteriophage phi812-K1. Phi812-K1 has a 90 nm diameter isometric head and 240 nm long contractile tail ended by a double layered baseplate. The tail and baseplate of the native phage are dynamic. Therefore, a divide-and-conquer strategy was employed to separately determine the cryo-EM reconstructions of the individual phage parts. The structure of the icosahedral head could be refined to 5.0 Å resolution and additional sub-averaging within the T=16 icosahedral asymmetric unit allowed determination of the major capsid protein to 3.8 Å resolution. The structures of the native tail and baseplate were solved to 8 Å and 12 Å resolution, respectively. In order to examine the mechanism of the infection process, we determined the structure of the phage in the contracted state. The phage head is not altered after the DNA ejection. However, both the baseplate and tail undergo large reorganizations documented in their 6 Å and 8 Å resolution structures. Comparison of the tail and baseplate structures in the native and contracted conformation allowed us to determine the changes  accompanying cell wall recognition and binding which is then followed by injection of the bacteriophage genome into the host bacteria.

To cite this abstract:

Jiří Nováček, Marta Šiborová, Martin Benešík, Roman Pantůček, Jiří Doškař, Pavel Plevka; Structure and genome delivery mechanism of Staphylococcus aureus phage therapy agent phi812-K1 determined by cryo-electron microscopy. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/structure-and-genome-delivery-mechanism-of-staphylococcus-aureus-phage-therapy-agent-phi812-k1-determined-by-cryo-electron-microscopy/. Accessed: December 4, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/structure-and-genome-delivery-mechanism-of-staphylococcus-aureus-phage-therapy-agent-phi812-k1-determined-by-cryo-electron-microscopy/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley