EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

STEM optical sectioning for imaging screw dislocation core structures

Abstract number: 6722

Session Code: IM01-OP052

DOI: 10.1002/9783527808465.EMC2016.6722

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Tomography and Multidimensional microscopy

Presentation Form: Oral Presentation

Corresponding Email: dhernandez@superstem.org

David Hernandez-Maldonado (1), Hao Yang (2), Lewys Jones (3), Roman Gröger (4), Peter B Hirsch (3), Quentin M Ramasse (1), Peter D Nellist (3)

1. SuperSTEM , STFC Daresbury Laboratories, Daresbury, Royaume Uni 2. Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, California, Etats-Unis 3. Department of Materials, University of Oxford, Oxford, Royaume Uni 4. Multiscale Modelling and Measurements of Physical Properties, Institute of Physics of Materials ASCR and CEITEC IPM, Brno, République tchèque

Keywords: aberration-correction, optical sectioning, screw dislocations, STEM

The introduction of spherical-aberration correctors in STEM has allowed an improvement in spatial resolution up to the sub-angstrom scale also accompanied by a reduction of the depth of focus (due to the increase in probe convergence angles), which in a modern instrument is just a few nanometers, thus often less than the sample thickness. This can be exploited to extract information along the beam direction by focusing the electron probe at specific depths within the sample. This technique has already been used to observe the depth-dependence of the strain field due to the Eshelby twist associated with dislocations containing a screw component in thin STEM samples. The measurement of the magnitude of the displacement confirmed the screw Burgers vector for dislocations in GaN [1] and allowed the identification of a new dissociation reaction associated with mixed [c+a] dislocations [2]. The optical sectioning approach has also been applied to the direct observation of the c-component of the dissociation reaction of a mixed [c+a] dislocation in GaN by imaging a dislocation lying transverse to the electron beam [3].

Here we show how optical sectioning in high-angle annular dark-field (HAADF) STEM imaging conditions can be used to image the core structure of screw dislocations at atomic resolution. In particular, we evaluate using simulations whether the edge and screw displacements associated with the delocalization of ½[111] screw dislocations in body-centered cubic (BCC) metals [4] can be detected. In Figure 1 we show that the helicoidal displacements around a screw dislocation can be imaged with the dislocation lying transverse to the electron beam by optically sectioning the plane containing the dislocation.

In order to reveal how the edge components of the dislocation contribute to the observed contrast we have created two atomistic models, one using the anisotropic linear-elastic displacements around the dislocation, which is not capable of modelling the core delocalisation, and the other using the core structure relaxed using the Bond Order Potential for W which does predict a delocalised core. Figures 2 a) and b) show the respective HAADF simulated images. Figure 2 c) is the RGB image made from the (101) component of the Fourier Transform (FT) (shown in Figure 2 d)) of both images. It is possible to observe that the shifts in this Fourier component occur along two distinct lines lying parallel to [111]. The superposition of both filtered images shows that there is a discrepancy on both sides of the core between both models. It is therefore apparent that the delocalisation of the core can in principle be detected using electron-optical sectioning [5,6].

References

[1] J. G. Lozano, et al. Phys. Rev. Lett. 113 (2014) 135503.

[2] P.B. Hirsch, et al. Philosophical Magazine, 93 (2013) 3925.

[3] H. Yang, et al. Nature Communications, 6 (2015) 7266.

[4] P.B. Hirsch, Fifth Internat. Congs. Crystallography, Cambridge, 139 (1960)

[5] D. Hernandez-Maldonado, et al. manuscript in preparation

[6] The SuperSTEM Laboratory is the U.K National Facility for Aberration-Corrected STEM, supported by the Engineering and Physical Science Research Council (EPSRC). 

Figures:

To cite this abstract:

David Hernandez-Maldonado, Hao Yang, Lewys Jones, Roman Gröger, Peter B Hirsch, Quentin M Ramasse, Peter D Nellist; STEM optical sectioning for imaging screw dislocation core structures. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/stem-optical-sectioning-for-imaging-screw-dislocation-core-structures/. Accessed: September 22, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/stem-optical-sectioning-for-imaging-screw-dislocation-core-structures/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley