EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Materials for optics and nano-optics

Presentation Form: Oral Presentation

Corresponding Email:

Erik Mårsell (1), Arthur Losquin (1), Chen Guo (1), Anne Harth (1), Eleonora Lorek (1), Miguel Miranda (1), Cord Arnold (1), Hongxing Xu (2), Johan Mauritsson (1), Anne L'Huillier (1), Anders Mikkelsen (1)

1. Department of Physics, Lund University, Lund, Suède 2. School of Physics and Technology, and Institute for Advanced Studies, Wuhan University, Wuhan, Chine

Keywords: Photoemission Electron Microscopy, ultrafast plasmonics

Surface plasmons are capable of concentrating light on both a nanometre spatial and femtosecond temporal scale, thus serving as a basis for nanotechnology at optical frequencies. However, the simultaneously small and fast nature of surface plasmons leads to new challenges for spatiotemporal characterization of the electric fields. An especially successful method for this purpose is photoemission electron microscopy (PEEM) in combination with ultrashort laser pulses. This method uses the high spatial resolution offered by electron microscopy together with the temporal resolution offered by femtosecond laser technology. By combining PEEM with state-of-the-art sources of ultrashort bursts of light, we have contributed to two pathways towards the ultimate goal: the full spatiotemporal reconstruction of the surface electric field at arbitrary nanostructures.

The first approach is based on extending interferometric time-resolved PEEM (ITR-PEEM) [1] to the few light cycle regime by using two synchronized pulses from an ultra-broadband oscillator. Because the photon energy (1.2-2.0 eV) is well below the material work function, photoemission occurs through a multiphoton process. The measurement is performed by scanning the delay between two identical, sub-6 fs pulses and measuring the local photoemission intensity (Fig. 1a). We have applied this method to a variety of nanostructures, including rice-shaped silver particles, nanocubes, and gold bow-tie nanoantennas. As an example, results from the rice-shaped silver nanoparticles are shown in Fig. 1. We excited multipolar surface plasmons at grazing incidence, and imaged the photoelectrons emitted from the two ends of the nanoparticle (Fig. 1b). Upon scanning the delay between the two pulses, the interference fringes measured from the two ends of the nanoparticle are shifted with respect to each other (Fig. 1c). We show that these shifts correspond to locally different instantaneous frequencies of the near-field within the same nanoparticle, and that these differences occur due to a combination of retardation effects and the excitation of multiple surface plasmon modes [2].

The second approach is based on using high-order harmonic generation (HHG) to produce attosecond pulses in the extreme ultraviolet (XUV) region. Attosecond XUV pulses have been proposed to enable a direct spatiotemporal measurement of nanoplasmonic fields with a temporal resolution down to 100 as [3]. However, PEEM imaging using HHG light sources has turned out to be a major challenge due to numerous issues such as space charge effects, chromatic aberration, and poor image contrast [4-6]. To address these issues, we perform HHG using a new optical parametric chirped pulse amplification system delivering 7 fs pulses at 200 kHz repetition rate. We show how the XUV pulses generated by this system allow for PEEM imaging with both higher resolution and shorter acquisition times. For comparison, Fig. 2 shows PEEM images of silver nanowires on a gold substrate, imaged using high-order harmonics at 1 kHz repetition rate (Fig. 2a, acquisition time is 400 s) and at 200 kHz repetition rate (Fig. 2b, acquisition time is 30 s). The image quality is clearly improved (Fig. 2c). We also show how the higher repetition rate allows for PEEM imaging using only primary (“true”) photoelectrons, whereas previous studies have acquired images using secondary electrons [4-6].

[1] A. Kubo et al., Nano Lett. 5, 1123 (2005).

[2] E. Mårsell et al., Nano Lett. 15, 6601 (2015).

[3] M. I. Stockman et al., Nat. Photon. 1, 539 (2007).

[4] A. Mikkelsen et al., Rev. Sci. Instrum. 80, 123703 (2009).

[5] S. H. Chew et al., Appl. Phys. Lett. 100, 051904 (2012).

[6] E. Mårsell et al., Ann. Phys. (Berlin) 525, 162 (2013).

Figures:

Fig. 1. Few-cycle ITR PEEM experiments on single rice-shaped silver nanoparticles. (a) Schematic of an ITR-PEEM experiment. (b) Multiphoton PEEM image of a rice-shaped silver nanoparticle. (c) Normalized photoemission intensity from the two ends as a function of delay between the laser pulses. Inset: scanning electron microscopy image of the same particle. Figure adapted from ref. [2].

Fig. 2. Comparison of PEEM image quality when using different HHG sources. (a) PEEM image of silver nanowires on a gold substrate, imaged using high-order harmonics at 1 kHz repetition rate. (b) PEEM image of the same type of silver nanowires on a gold substrate, imaged using high-order harmonics at 200 kHz repetition rate. (c) Comparison between line cuts across nanowires as marked by the lines in (a-b).

To cite this abstract:

Erik Mårsell, Arthur Losquin, Chen Guo, Anne Harth, Eleonora Lorek, Miguel Miranda, Cord Arnold, Hongxing Xu, Johan Mauritsson, Anne L'Huillier, Anders Mikkelsen; Spatiotemporal imaging of few-cycle nanoplasmonic fields using photoemission electron microscopy. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/spatiotemporal-imaging-of-few-cycle-nanoplasmonic-fields-using-photoemission-electron-microscopy/. Accessed: December 4, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/spatiotemporal-imaging-of-few-cycle-nanoplasmonic-fields-using-photoemission-electron-microscopy/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley