EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Scanning electron diffraction of polyethylene

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Complex materials and nanocomposites

Presentation Form: Oral Presentation

Corresponding Email:

SungJin Kang (1), Duncan Johnstone (1), Hiroshi Jinnai (2), Takeshi Higuchi (2), Hiroki Murase (3), Paul Midgley (1)

1. Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, Royaume Uni 2. Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japon 3. Department of Textile and Clothing, Kyoritsu Women’s University, 2-2-1, Hitotsubashi, Chiyoda-ku, Tokyo, 101-8437, Japon

Keywords: lamella twist, polyethylene, scanning electron diffraction, virtual dark field imaging

Microstructural investigation of light elements and highly beam sensitive polymer materials using electron microscopy is attractive for elucidating nanostructure but presents numerous challenges. In particular, heavy element staining, often used to obtain image contrast, may obscure or degrade the structure of interest and the acquisition of detailed and spatially resolved information must be balanced with damage of the specimen. Here, scanning electron diffraction (SED) has been used to analyse the crystalline microstructure of unstained polyethylene, overcoming these challenges. SED involves scanning the electron beam across the specimen and recording a diffraction pattern at each position [1] at a high frame rate to enable the data to be acquired before severe degradation of the structure has occurred. In this way, electron diffraction patterns were obtained from an unstained polyethylene sample in 5 nm steps, over areas of a few microns squared and with a 10 ms dwell time. Radiation damage was further minimised by using a high electron acceleration voltage (300kV) to minimise radiolysis and cooling the sample with liquid nitrogen [2]. The diffraction patterns, acquired at every position in the scan, were indexed and analysed by plotting the intensity of a particular reflection as a function of electron probe position to form ‘virtual’ dark field (VDF) images. VDF imaging is much more effective than conventional imaging for visualizing the microstructure of polyethylene. Clear contrast is obtained without staining and the versatile post-facto nature of VDF image formation enables multiple complementary images to to be produced from a single acquisition.
Two novel observations from our SED experiments on polyethylene are highlighted here. The sample of polyethylene was extruded from a melt so as to form ‘shish-kebab’ structures confirmed through BF images of stained microtomed sections. For our experiments, again the samples were microtomed but now unstained to avoid any influence of the stain on the diffraction patterns. The first experiment highlights a lamella-like fragment of polyethylene crystal (likely to be a part of the ‘kebab’ structure). Fig 1 shows a ‘virtual’ BF image and a sample of diffraction patterns that can only be indexed assuming the orthorhombic crystal structure of polyethylene and that the lamella is twisting about a single axis almost parallel to the vertical axis of the image. Moreover, forming consecutive VDF images made it possible to visualize each region of the crystal having a particular orientation in the twisted lamella (Fig 2). In the second experiment, we found that the sample had several micron sized islands of hexagonal polyethylene first seen as a high pressure phase [3]. However, here the patterns reveal a √3 superstructure with weak spots at the 1/3[110]* position (Fig 3). VDF images (Fig 3(b-d)) formed by these supercell reflections revealed domains within which ‘striped’ contrast can be seen; these stripes run at an orientation of approximately 120° to one another. This work demonstrates the applicability of the SED technique to highly beam sensitive materials like polyethylene and the potential for new microstructural insights to be made in this way.

[1] Moeck P. et al., Cryst. Res. Technol., 2011, 46, 586-606
[2] Egerton R. F. et al., Micron, 2004, 35, 399-409
[3] Bassett D. C., et al., Journal of Applied Physics, 1974, 4146-415

   

PAM and SJK would like to acknowledge funding under ERC Advanced Grant 291522-3DIMAGE. DNJ receives a Vice Chancellor’s award from the University of Cambridge. HJ and HT thank Ms. Makiko Ito for her help in microtoming the polyethylene samples. The authors would like to thanks Anton Jan Bons (ExxonMobil) for initiating this research and stimulating discussions.

Figures:

Figure 1: (a) Bright field image formed by collected SED patterns. Scale bar is 100nm. (b-e) SED patterns from the location marked in (a) (cross points of two white lines).

Figure 2: VDF images formed from the major reflections observed moving from top to bottom region in Figure 1(a). Scale bar is 100nm.

Figure 3: (a) One of SED pattern from the region having hexagonal crystal structure. (b-d) VDF images from the supercell reflections marked by 1-3 in (a). Scale bar is 100nm.

To cite this abstract:

SungJin Kang, Duncan Johnstone, Hiroshi Jinnai, Takeshi Higuchi, Hiroki Murase, Paul Midgley; Scanning electron diffraction of polyethylene. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/scanning-electron-diffraction-of-polyethylene/. Accessed: November 17, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/scanning-electron-diffraction-of-polyethylene/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley