EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Probing cell behavior: Combining MEMS (microelectromechanical systems) technology with high resolution live cell imaging

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Life Sciences

Topic: Cell organisation and dynamics

Presentation Form: Invited Speaker

Corresponding Email:

Anja Geitmann (1)

1. Plant Science, McGill University, Montreal, Canada

Keywords: cell mechanics, live cell imaging, micromanipulation

Cell biological experimentation has benefitted from the development of microdevices based on microfluidics and MEMS (microelectromechanical systems) technology. These devices exploit the possibility to create microscopic 3D structures that can be used to manipulate single cells. Furthermore, microdevices can be used to miniaturize laboratory functions (Lab-on-a-Chip). We developed an experimental platform with the specific aim to study tip growing cells, the TipChip [1]. The device allows positioning of single cells such as pollen grains or fungal spores at the entrances of serially arranged microchannels harboring microscopic experimental setups. The transport of the cells is mediated by fluid-flow. Once positioned in the device, the tip growing cells, pollen tubes, filamentous yeast or fungal hyphae, can be exposed to chemical gradients, microstructural features, integrated biosensors or directional triggers. The device is compatible with Nomarski optics and fluorescence microscopy and can thus be used for live cell imaging. Using the TipChip platform we investigated the growth mechanism in pollen tubes. The pollen tube is a cellular transport system that is generated to connect the male gametophyte with its female counterpart. Through this catheter-like protuberance the sperm cells are delivered from the pollen grain to the ovule nestled deep within the pistillar tissues. To be competitive, the pollen tube elongates extremely rapidly and it has to do so against the impedance of the apoplast of the transmitting tissue and through the maze of pistillar cells that separate the pollen grain from the ovule. Using calibrated micro-cantilevers we quantified the invasive force of the pollen tube and we found that sperm cell discharge can be triggered by mechanical constriction [2]. Further applications include exposure of cells to precisely calibrated electric fields and micron-sharp, tunable chemical gradients. The TipChip is therefore a highly versatile tool for the combined quantitative biophysical and optical investigation of polar growth in plant cells.

 

References

Figures:

TipChip for micromanipulation of tip growing cells and live cell microscopy. A. Configuration of the Lab-on-Chip device. B. Brightfield image of the microfluidic network. C. Overview of the microfluidic network. D. Fluid velocities in the microfluidic network as simulated using finite element modeling. E. Scanning electron micrograph of structural feature used to expose pollen tubes to mechanical obstacles. F. Microchannel with wavy feature to guide pollen tubes. G. The TipChip is compatible with Nomarski optics (inset) and fluorescence microscopy. H. TipChip configuration used to test the effect of microchannel geometry on cell behavior.

To cite this abstract:

Anja Geitmann; Probing cell behavior: Combining MEMS (microelectromechanical systems) technology with high resolution live cell imaging. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/probing-cell-behavior-combining-mems-microelectromechanical-systems-technology-with-high-resolution-live-cell-imaging/. Accessed: December 2, 2023

Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/probing-cell-behavior-combining-mems-microelectromechanical-systems-technology-with-high-resolution-live-cell-imaging/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites


The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley