EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Optimizing CLEM protocols for plants cells: A good preservation of GFP fluorescence and ultrastructure in Arabidopsis roots.

Abstract number: 6558

Session Code: IM10-121

DOI: 10.1002/9783527808465.EMC2016.6558

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Correlative microscopy

Presentation Form: Poster

Corresponding Email: jessica.marion@i2bc.paris-saclay.fr

Jessica MARION (1), Romain LE BARS (2), Béatrice SATIAT-JEUNEMAITRE (1), Claire BOULOGNE (2)

1. Laboratoire dynamique de la compartimentation cellulaire - Institute for Integrative Biology of the Cell (I2BC)-Université Paris‐Saclay, CNRS, Gif-sur-Yvette, France 2. Pole d'Imagerie - Institute for Integrative Biology of the Cell (I2BC)-Université Paris‐Saclay, CNRS, Gif-sur-Yvette, France

Keywords: Arabidopsis, GFP, GMA resin, Tokuyasu, transmission electron microscopy

While there is an explosion in Correlative Electron and Light Microscopy (CLEM) protocols, many have been developed on different eukaryotic models, though reports on plant cell exploration by CLEM remain scarce (Bell et al., 2013). Indeed, plant cells represent a challenge for imaging in many ways. Plant specificities have to be taken into account when optimizing CLEM protocols. To name some, strong autofluorescence of cellular components specifically present in plant cells (chlorophyll, pigments, etc.) and interfering with fluorescent signals of reporter proteins, presence of a large central vacuole complicating the fixation and the dehydration processes needed for TEM processing, cell wall and cuticles acting as physical barriers and impairing resin embedding processes (Hawes et al., 2001).

 

Here we report two “in hand” robust and easily reproducible protocols to make such CLEM approaches on plant material. The proposed protocols had been worked out on the delicate question of autophagosomes identity in plant cells. Autophagy is a degradation process of intracellular components mainly implicated in response to environmental stresses. It consists in the delivery of cytosolic cargos entrapped by a compartment, named autophagosome, to lytic compartments for degradation and recycling. In plant cells as in any eukaryotic cells, autophagosomes have been identified as ring-shape or punctate structures, thanks to the light imaging of reporter proteins of markers for autophagosomes (Le Bars et al., 2014).

 

This study is using a Arabidopsis transgenic lines stably expressing GFP-ATG8, which is a common marker for autophagosomes. Two CLEM protocols are used:  firstly the high pressure freezing followed by acrylic resin embedding, and on the other hand the Tokuyasu method.  Here we compare the performance of the two protocol to preserve GFP fluorescence and enhanced ultrastructural features in plant cells.

 

References:

Hawes, C. and Satiat-Jeunemaitre, B. 2001 Plant Cell Biology: A Pratical Approach, 2nd edn. Oxford: Oxford University Press, 1–324.

Bell, K., Mitchell, S., Paultre, D., Posch, M., Oparka, K., 2013. Correlative Imaging of Fluorescent Proteins in Resin-Embedded Plant Material. Plant Physiol. 161, 1595–1603.

Le Bars, R., Marion, J., Le Borgne, R., Satiat-Jeunemaitre, B., Bianchi, M.W., 2014. ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants. Nat. Commun. 5.

To cite this abstract:

Jessica MARION, Romain LE BARS, Béatrice SATIAT-JEUNEMAITRE, Claire BOULOGNE; Optimizing CLEM protocols for plants cells: A good preservation of GFP fluorescence and ultrastructure in Arabidopsis roots.. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/optimizing-clem-protocols-for-plants-cells-a-good-preservation-of-gfp-fluorescence-and-ultrastructure-in-arabidopsis-roots/. Accessed: September 25, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/optimizing-clem-protocols-for-plants-cells-a-good-preservation-of-gfp-fluorescence-and-ultrastructure-in-arabidopsis-roots/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley