EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

New Approaches to Multi-Dimensional Experiments in S/TEM: Application of High Speed Cameras

Abstract number: 6061

Session Code: IM01-144

DOI: 10.1002/9783527808465.EMC2016.6061

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Tomography and Multidimensional microscopy

Presentation Form: Poster

Corresponding Email: apakzad@gatan.com

Anahita Pakzad (1), Cory Czarnik (1), Roy Geiss (2), David Mastronarde (3)

1. R&D Headquarters, Gatan Inc., Pleasanton, Etats-Unis 2. Chemistry Department, Colorado State University, Fort Collins, Etats-Unis 3. MCDB, University of Colorado, Boulder, Etats-Unis

Keywords: 4D-STEM, High speed, Multi-dimensional, Tomography

Since the first experimental charge coupled device was reported in 1982 [1], there have been a series of major developments in digital imaging techniques for transmission electron microscopy (TEM). These include use of complementary metal-oxide semiconductor (CMOS) devices, which resulted in improvements in camera sensitivity, detective quantum efficiency (DQE) and speed. Here we will present how such developments can benefit some common TEM based experiments, such as electron tomography (ET) and four dimensional scanning TEM (4D-STEM) diffraction.

ET consists of acquisition of a series of images of the specimen in different viewing directions and is used for three dimensional (3D) studies of nanoscale materials in a TEM. The tilt range and tilt increment in an ET experiment directly affects the resolution of the 3D reconstruction.  In cases where the specimen is electron sensitive, the number of projections that can be recorded is typically limited as the sample is repeatedly exposed to the beam. Leveraging the advantages of a high speed camera can also benefit low dose ET and 3D time-resolved studies of dynamic processes in a TEM. Here high speed ET datasets will be presented that were collected using a high speed CMOS camera while the TEM goniometer was continuously tilting. Such an approach improves the resolution of 3D reconstruction for thicker specimens by reducing the tilt increment from several degrees to a small fraction of a degree, and reduces the data acquisition time from several tens of minutes to a few minutes, simultaneously improving angular resolution and potentially reducing beam damage to the specimen.

STEM diffraction imaging is a common analytical method to collect specimen structure, strain and texture. Here either a convergent or parallel electron beam is used to produce diffraction patterns, which can be used to characterize defects, interfaces and small nanostructures and allow accurate measurements of strain and crystal orientation. 4D-STEM diffraction is done by collecting a diffraction pattern pixel by pixel, as the electron beam is scanned on the specimen. Limited data collection speed (i.e., frame rate of the sensor) has been one of the main challenges of this technique. Conventional CCD cameras were limited to up to 30 frames per second (fps), which restricted the number of diffraction patterns collected in a given amount of time. This can be even more challenging in the cases of beam sensitive specimens, or when drift exists. We will present 4D-STEM datasets collected with high speed CMOS cameras and will show how these new systems with superior DQE and speed can benefit STEM diffraction imaging experiments.

Figure 1a below shows 2 images from a high speed tomography experiment on an array of Au nanoparticles. These two images are approximately 60 degrees apart and it was collected in 120 degree tilt range in 110 seconds. The reduction of such a data stream as a tomogram will be presented. And, Figure 1b shows CBED patterns from inside and outside of a vacancy dislocation loop in a Cu specimen.

Reference:

[1] PTE Roberts, JN Chapman and AM MacLeod, Ultramicroscopy 8 (1982), p. 385.

Figures:

Figure 1. (a) Pair of images 60 degrees apart in high speed tilt experiment. Latex spheres are 250 nm in diameter (b) CBED patterns from a prismatic dislocation loop in a copper foil. Image width is 100 nm.

To cite this abstract:

Anahita Pakzad, Cory Czarnik, Roy Geiss, David Mastronarde; New Approaches to Multi-Dimensional Experiments in S/TEM: Application of High Speed Cameras. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/new-approaches-to-multi-dimensional-experiments-in-stem-application-of-high-speed-cameras/. Accessed: September 27, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/new-approaches-to-multi-dimensional-experiments-in-stem-application-of-high-speed-cameras/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley