EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

New approach for low dose electron diffraction tomography

Abstract number: 6521

Session Code: IM01-OP050

DOI: 10.1002/9783527808465.EMC2016.6521

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Tomography and Multidimensional microscopy

Presentation Form: Poster

Corresponding Email: hans.tietz@tvips.com

Reza Ghadimi (1), Hans Tietz (1), Peter Olyenikov (2)

1. TVIPS GmbH, Gauting, Allemagne 2. Materials and Environmental Chemistry, Stockholm University, Stockholm, Suède

Keywords: 3D, Diffraction Tomography, EDT, Low Dose Tomography, Precession

Due to strong interaction of electrons with matter, 3D electron diffraction tomography has been proven to be a reliable method to solve structures of very small crystals, compared to X-ray diffraction; even for small protein crystals [1]. 

Several procedures for automated acquisition of tomographic diffraction data sets have been described [2, 3], using precession technique or discrete beam tilt perpendicular to the goniometer tilt axis. However, those mentioned methods are mainly used for less beam sensitive materials and are not suitable for low dose applications.

Shi et al. [4-7] refined the collection of 3D data sets under low dose condition (less than 10 e–/Å2). Here, the camera system is continuously acquiring diffraction data during a continuous tilt of the goniometer. This allows to completely scan the Fourier space. It turned out that the stability of the goniometer tilt speed and the limited flexibility of the tilt acquisition parameters are problematic.

Here, we present a newly developed automatic data acquisition system, combining real-time direct control of the TEM-deflection systems, the goniometer tilt and the acquisition of high-resolution diffraction patterns with a synchronized CMOS camera. This can be realized by the TVIPS Universal Scan Generator (USG), controlling eight TEM deflection coils, i. e. four beam deflection coils and four image deflection coils.

For a static goniometer alpha, the total beam tilt range (±3° to ±5°, depending on the TEM) can be fragmented by a defined beam tilt range, e.g. 0.5° (see Fig. 1). During the camera exposure time the beam is continuously tilted for this defined range (e.g. 0.5°). The continuous beam sweep during exposure time ensures the complete sampling of the Fourier space. 

Several crystal structures (Carbamazepin: C15H12N2O, bismuth oxychloride: BiOCl, Mayenite: Ca12Al14O33) have been successfully solved by this method. The total acquisition time for 190 high resolution (1Å resolution) diffraction patterns is about 15 minutes, with a total electron dose of about 10 e–/Å2. The collected 3D electron diffraction data sets were processed using the EDT-PROCESS software [8].


 

References

1.       J. A. Rodriguez, M. I. Ivanova, M. R. Sawaya, D. Cascio, F. E. Reyes, D. Shi,S. Sangwan, E. L. Guenther, L. M. Johnson, M. Zhang, L. Jiang, M. A. Arbing, B. Nannenga, J. Hattne, J. Whitelegge, A. S.     Brewster, M. Messerschmidt, S. Boutet, N. K. Sauter, T.Gonen and D. Eisenberg: Structure of the toxic core of α-synuclein from invisible crystals, Nature (2015);  525 (7570).

2.       U. Kolb, T. Gorelik, C. Kübel, M.T. Otten and D. Hubert: Towards automated diffraction Tomography: part I- data acquisition, Ultramicroscopy (2007) ; 107(6-7):507-13.

3.       D. Zhang, P. Oleynikov, S. Hovmoller and X. Zou:Collecting 3D electron diffraction data by the rotation method, Z. Kristallogr (2010); 225 94–102.

4.       D. Shi, B.L. Nannenga, M.G. Iadanza and T. Gonen: Three-dimensional electron crystallography of protein microcrystals, eLife (2013); 2:e01345.

5.       B.L. Nannenga, D. Shi, j. Hattne, F.E. Reyes and T. Gonen: Structure of catalase determined by MicroED, eLife (2014); 3:e03600.

6.       B.L. Nannenga and T. Gonen:Protein structure determination by MicroED, Current Opinion in Structural Biology (2014); Volume 27:24–31.

7.       B.L. Nannenga, D. Shi, A.G.W. Leslie and T. Gonen: High-resolution structure determination by continuous-rotation data collection in MicroED, Nature Methods 11(2014); 927–930.

8.     M. Gemmi, P. Oleynikov: Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. für Krist. 228 (2013) 51-58.

 

Figures:

Schematic visualizing of the newly developed data acquisition system: combining real-time direct control of the TEM-deflection systems, the goniometer tilt and the acquisition of high-resolution diffraction patterns with a synchronized CMOS camera.

Diffraction pattern of Mayenite using beam sweeping method acquired by a TemCam-F416 mounted on a Tecnai-F12.

Projection of 3D volumetric data (209 frames of 0.5° sweeping range, 5 minutes total acquisition time, 9 ē/Å2 total electron dose) of Mayenite in reciprocal space.

To cite this abstract:

Reza Ghadimi, Hans Tietz, Peter Olyenikov; New approach for low dose electron diffraction tomography. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/new-approach-for-low-dose-electron-diffraction-tomography/. Accessed: September 23, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/new-approach-for-low-dose-electron-diffraction-tomography/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley