EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Native machinery of membrane-associated protein synthesis

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Life Sciences

Topic: Macromolecular assemblies, supra molecular assemblies

Presentation Form: Invited Speaker

Corresponding Email:

Stefan Pfeffer (1), Robert Englmeier (1), Friedrich Foerster (2, 1)

1. Structural Biology, Max-Planck Institute of Biochemistry, Martinsried, Allemagne 2. Cryo-electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Pays-Bas

Keywords: cryo-electron tomography, endoplasmic reticulum, mitochondria, ribosome, translocon

A large fraction of ribosomal synthesis occurs at organellar membranes. At the endoplasmic reticulum (ER), the inner mitochondrial, and the thylakoid membrane, nascent proteins are co-translationally inserted or transported into other compartments. Here, we structurally study membrane-bound ribosomes and their associated machineries in their native settings using cryo-electron tomography (cryo-ET) in combination with subtomogram analysis (Fig. 1).

Studies of ribosomes associated to isolated rough ER vesicles reveal the structure of the native ER translocon, as well as its compositional variability. Core components of the ER translocon are the protein-conducting channel Sec61, the translocon associated protein complex (TRAP), and the sub-stoichiometric oligosaccharyl transferase complex (OST), which all bind to the ribosome. Subnanometer resolution subtomogram averages indicate that the ribosome alone, even without a nascent chain, is sufficient for lateral opening of Sec61, contrary to recent mechanistic models. To elucidate the structures and functions of TRAP and OST in detail, we make use of mutations involved in congenital disorders, as well as their evolutionary diversity across different organisms. Analysis of cryo-tomograms from focused-ion-beam-milled whole cells allows studying the compositional variability of the ER-translocon and the relative arrangement of ER-associated ribosomes in vivo, which reveals a highly characteristic polysome organization.

Mitochondrial ribosomes specialize on the synthesis of few, very hydrophobic membrane proteins. Cryo-electron tomographic analysis of mitochondria isolated from Saccharomyces cerevisiae reveals the binding mode of mitoribosomes to the inner mitochondrial membrane, as well as their molecular organization into polysomes. The structures of mammalian mitoribosomes differ dramatically from their fungal counterparts and we study the consequences of these differences on membrane association and polysome organization. State-of-the-art phase plate imaging helps to overcome the contrast limitations set by the extremely dense and optically barely electron transparent mammalian mitochondria.

Chloroplast ribosomes constitute the third realm of eukaryotic ribosomes. We analyzed the in situ structure and intracellular distribution in green algae. The interaction mode of ribosomes with the thylakoid membrane appears to be much less defined than those of their cytoplasmic and mitochondrial counterparts.

In summary, in situ studies using cryoelectron tomography put atomic-level structural information of ribosomal complexes into context with their associated organellar membranes and their respective co-translational processing machineries, revealing high evolutionary diversity for organelles and organisms.

Figures:

Fig. 1. Subtomogram analysis applied to the ER-associated mammalian ribosome. A: Principle of subtomogram analysis. A tomogram of a ribosome-studded microsome is reconstructed from projections. Particles (ribo-somes) are detected using automated methods and the corresponding subtomograms are aligned. Classification allows resolving different populations of particles. B: Architecture of the major complexes constituting the na-tive translocon (protein-conducting channel Sec61, TRAP complex, and oligosaccharyl transferase complex, OST) resolved by subtomogram averaging to ~8 Å.

To cite this abstract:

Stefan Pfeffer, Robert Englmeier, Friedrich Foerster; Native machinery of membrane-associated protein synthesis. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/native-machinery-of-membrane-associated-protein-synthesis/. Accessed: December 2, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/native-machinery-of-membrane-associated-protein-synthesis/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley