EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Nanoscale Ordering in Oxygen Deficient Quintuple Perovskite Sm2 εBa3+εFe5O15-δ revealed by TEM

Abstract number: 4806

Session Code: MS06-OP278

DOI: 10.1002/9783527808465.EMC2016.4806

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Oxide-based, Magnetic and other Functional materials and Applications

Presentation Form: Oral Presentation

Corresponding Email: oleg.lebedev@ensicaen.fr

Oleg Lebedev (1), Stuart Turner (2), Vladimir Cherepanov (3), Bernard Raveau (1)

1. Laboratory CRISMAT UMR 6508, , ENSICAEN-CNRS, Université Caen, Caen, France 2. EMAT, University of Antwerp, Antwerpen, Belgique 3. Department of Chemistry, Institute of Natural Sciences, Ural Federal University , Yekaterinburg, Russie

Keywords: ABF-STEM, EELS maping, HAADF STEM, Ordering, Quintuple perovskite

The introduction of two sorts of cations with different valence and size, such as Ba2+ or Sr2+ and Ln3+, in the A-sites of transition metal perovskite oxides has generated numerous remarkable properties such as high Tc superconductivity,  oxygen storage in cobalt based oxides for the realization of solid oxide fuel cell (SOFC) cathodes , CMR in manganates .

The investigation of the system Sm-Ba-Fe-O in air has allowed an oxygen deficient perovskite Sm2-εBa3+εFe5O15-δ (δ=0.75, ε=0.125) to be synthesized. In contrast to the XRPD pattern which gives a cubic symmetry (ap= 3.934Å), the ED patterns of this phase (Fig.1a) show superstructure spots corresponding to c=5ap”. HRTEM study (Fig1b) revealed that this phase is nanoscale ordered with a quintuple tetragonal cell, “ap ´ ap ´ 5ap”. Bearing in mind that one cubic cell corresponds to the formula Sm0.375Ba0.625FeO2.85, these tetragonal nanostructures can be formulated as Sm2-εBa3+εFe5O15-δ (δ~0.75, ε~0.125). They consist of 5 SmO/BaO layers stacked alternately with 5 FeO2 layers along c. The HAADF-STEM image (Fig.1c) of the Sm2-εBa3+εFe5O15-δ structure along the [100] is clearly established from the contrast segregation that the Ba2+ and Sm3+ cations are ordered in (001) layers along the c-axis. One observes rows of bright dots perpendicular to c, which corresponds to three sorts of Sm or Ba cationic layers, judging from their intensity: pure Sm, mixed Ba/Sm and pure Ba layers. Thus the HAADF-STEM image can be interpreted by the following periodic stacking sequence of the A cationic layers along the c axis: “Sm-Ba-Sm/Ba-Sm/Ba-Ba-Sm”.

It appears from the ABF-STEM images along [100] (Fig.1d) and [110] orientations (Fig.1e) of a single Sm2‑εBa3+εFe5O15-δ domain, that the oxygen positions in all the layers are close to the ideal octahedral positions. However, a closer inspection of the images reveals that the oxygen columns in the equatorial positions close to the Sm layer deviate from their ideal octahedral position, and lie closer to the Sm3+ cations yielding a “zigzag” contrast along [100] and [110].

The “Sm-Ba-Sm/Ba-Sm/Ba-Ba-Sm” chemical ordering is also confirmed by elemental EELS mapping (Fig.2a,b). The spatially resolved EELS data show that the O-K edge spectra corresponding to the “FeO2” planes (labeled A,B,C) exhibit different intensity ratios of the two pre-peaks to the O-K edge, prepeak1/ prepeak2 at approximately 529/531 eV, depending on the nature of the surrounding “Sm,Ba” layers (Fig.2c). The O-K fine structure in the Sm plane is very similar to that of plane A, whereas those of the Ba and Ba/Sm planes are similar to B and C planes respectively. A first observation is that pre-peak 1 at ~529 eV is less intense for oxygen anions close to Sm cations (SmO layers as well as A layers). According to the literature, the height of this pre-peak is generally rather independent of the rare earth element and should be around the same height as pre-peak 2. Pre-peak 2, related to Fe3d eg – O2p hybridized states seems invariant in the structure, apart from the c plane where it is slightly subdued, accompanied by an increase of pre-peak 1 below 530eV. Pre-peak 1 can be attributed to a charge transfer from the eg to the t2g band of Fe (the eg band is usually empty for Fe3+). This increase of pre-peak 1 related to Fe3d t2g – O2p hybridized states is also visible in the Ba/Sm mixed layers, and can be linked to the presence of oxygen vacancies in those planes. This peak is stronger in the C plane suggesting the presence of more vacancies in this plane.The spatially resolved EELS spectra of the Fe-L2,3 edge are plotted in Fig. 2c. The Fe L3 and L2 “white lines” arise from transitions of 2p3/2 → 3d3/23d5/2 (L3) and 2p1/2 → 3d3/2 (L2) and are known to be sensitive to valency and coordination. Our data shows that the A and B FeO2 planes exhibit very similar Fe-L2,3 edges, with an L3 peak maximum at 709.5 eV, and a pre-peak to L3, even if faint at 708 eV. The energy position of the L3 maximum, together with the shape and positions of the L3 and L2 are then indicative of Fe3+ in an octahedral coordination. All the acquired Fe L3 edges are significantly broadened with respect to the plotted references for 6-fold, 5-fold and 4-fold coordinated Fe3+. This broadening can be explained by a change in coordination of the Fe atoms. Bearing in mind that the measured oxygen stoichiometry is 14.25, instead of 15, this suggests that the iron coordination is mainly 6, i.e. octahedral, but may also be mixed with the presence of some FeO5 pyramids in those layers.

The nanoscale ordering of this perovskite explains its peculiar magnetic properties on the basis of antiferromagnetic interactions with spin blockade at the boundary between the nanodomains. The variation of electrical conductivity and oxygen content of this oxide versus temperature suggest potential SOFC applications.

Figures:

Fig. 1 (a) ED patterns along main zone axis. (b) [100] HRTEM image of Sm2-εBa3+εFe5O15-δ.. (c) Corresponding [100] HAADF-STEM image showing a 5 perovskite unit cell con-trast periodicity along the c-axis. (d),(e)HAADF-STEM and simultaneously acquired ABF-STEM images along the (d) [100] and (e) [110] zone axis orientation showing the oxygen lattice. Enlargement image and corresponding structural model is given as insert

Fig. 2:(a) [100]HAADF-STEM image of Sm2-εBa3+εFe5O15- δ . and EELS elemental mapping of Fe-L2,3 ; Sm-M4,5 ; Ba-M4,5;O-K . Colour overlay: Sm in red and Ba in green. (b) Structural model with indicated EELS integration areas. (c) EELS fine structure : (Left panel)- O-K edge fine structure and (Right panel)- Fe-L2,3 fine structure signatures from the regions indicated in the (b) with references for 4, 5 and 6-fold coordinated Fe3+.

To cite this abstract:

Oleg Lebedev, Stuart Turner, Vladimir Cherepanov, Bernard Raveau; Nanoscale Ordering in Oxygen Deficient Quintuple Perovskite Sm2 εBa3+εFe5O15-δ revealed by TEM. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/nanoscale-ordering-in-oxygen-deficient-quintuple-perovskite-sm2-%ce%b5ba3%ce%b5fe5o15-%ce%b4-revealed-by-tem/. Accessed: March 2, 2021
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/nanoscale-ordering-in-oxygen-deficient-quintuple-perovskite-sm2-%ce%b5ba3%ce%b5fe5o15-%ce%b4-revealed-by-tem/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Pixelated STEM detectors: opportunities and challenges
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Atomic relaxation in ultrathin fcc metal nanowires

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2021 John Wiley & Sons, Inc. All Rights Reserved.
Wiley
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.