EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Microstructural and mechanical properties of hyper-deformed surfaces: In-situ micro-pillar compression and EBSD investigations in α-iron

Abstract number: 5568

Session Code: IM02-174

DOI: 10.1002/9783527808465.EMC2016.5568

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Micro-Nano Lab and dynamic microscopy

Presentation Form: Poster

Corresponding Email: sao-joao@emse.fr

David TUMBAJOY-SPINEL (1), Sergio SAO JOAO (1), Xavier MAEDER (2), Sylvie DESCARTES (3), Jean Michel BERGHEAU (4), Johann MICHLER (2), Guillaume KERMOUCHE (1)

1. Laboratoire Georges Friedel (LGF), Mines Saint Etienne, SAINT ETIENNE, France 2. Laboratory for Mechanics of Materials and Nanostructures, EMPA, THUN, Suisse 3. LaMCoS, INSA-Lyon, VILLEURBANNE, France 4. LTDS, ENISE, SAINT ETIENNE, France

Keywords: EBSD, In-situ micro-pillar compression, Mechanical surface treatments, Tribologically Transformed Surfaces

The mechanical surface treatments confer better local mechanical properties against wear or fatigue service conditions. In the case of impact-based treatments, a local microstructure refinement in the near surface is produced by a severe plastic deformation of the material, leading to a progressive reduction of the grain size over a few tens of microns, and consequently an increase of the hardness and mechanical properties. These zones are commonly known as Tribologically Transformed Surfaces (TTS). In this project, the micro-structural transformation in the near surface is produced on pure α-iron samples using a repetitive impact-based procedure: Micro-percussion treatment. In this technique, every impact is effectuated on the same position with a rigid conical indenter (tungsten carbide), controlling the number, angle and velocity of impacts. The resulting imprint (figure 1) is characterized by a significant grain size refinement and consequently a graded strengthening as a function of distance to the impacted surface. Moreover, several in-situ micro-pillar compression tests are carried out in the cross-section of the hyper-deformed surface (figure 2) in order to quantify this mechanical property gradient in-depth. However, the yield strength increment observed with this technique does not reveal the different micro-structural contributions (grain size effect, dislocation hardening, etc…) on the increase of mechanical properties. Indeed, the main purpose of this work is to correlate the mechanical properties gradient with the local microstructural evolution produced by the impact-based severe plastic deformation. For these purpose, EBSD mapping (figure 1) is used to determine the grain size distribution and the local “Kernel Average Misorientation” (KAM) in the cross section. A qualitative estimation of the geometry necessary dislocation density could be done from this latter estimation. With this analysis, the Hall-Petch and dislocation strengthening contributions could be correlated and compared with the experimental results from micro-pillar compressions (figure 2).

Figures:

Figure 1: EBSD map (indexation step size 300 nm) in the cross-section of a micro-percussion test imprint: 10000 impacts, 15° et 150 mm/s.

Figure 2: Micro-pillars for in-situ compression tests in different regions of the imprint cross-section: TTS zone and single crystal region.

To cite this abstract:

David TUMBAJOY-SPINEL, Sergio SAO JOAO, Xavier MAEDER, Sylvie DESCARTES, Jean Michel BERGHEAU, Johann MICHLER, Guillaume KERMOUCHE; Microstructural and mechanical properties of hyper-deformed surfaces: In-situ micro-pillar compression and EBSD investigations in α-iron. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/microstructural-and-mechanical-properties-of-hyper-deformed-surfaces-in-situ-micro-pillar-compression-and-ebsd-investigations-in-%ce%b1-iron/. Accessed: January 20, 2021
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/microstructural-and-mechanical-properties-of-hyper-deformed-surfaces-in-situ-micro-pillar-compression-and-ebsd-investigations-in-%ce%b1-iron/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Pixelated STEM detectors: opportunities and challenges
  • Atomic relaxation in ultrathin fcc metal nanowires
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2021 John Wiley & Sons, Inc. All Rights Reserved.
Wiley
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.