EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Mathematical modeling of Cajal body formation

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Life Sciences

Topic: Cell organisation and dynamics

Presentation Form: Poster

Corresponding Email:

Michaela Blazikova (1), Anna Malinova (2), Ivan Novotny (1)

1. Light Microscopy Core Facility, Institute of Molecular Genetics, CAS, Prague, République tchèque 2. Department of RNA Biology, Institute of Molecular Genetics, CAS, Prague, République tchèque

Keywords: Cajal body, CB, mathematical modeling, STED microscopy, superresolution

In the living cells, there are many structures and organelles enveloped with a membrane that defines their border and controls the communication between the inner and outer environment. In contrast to membrane bound compartment, cells contain numerous membrane-less structures, whose formation is based on specific interactions among their components. These types of structures include Cajal bodies (CBs), PML bodies and P-Bodies found in most cell types, stress granules that appear upon environmental stress (heat shock, oxidative stress etc.) or various aggregates that form as result of protein/RNA mutations (e.g. protein inclusions in ALS). The biological role of the membrane-less structures is a topic of intensive research and the function of several bodies have been revealed. However, little is known about principles that lead to their formation. As an archetypal compartment, we employed the CB (Fig.1), the self-organizing structure involved in metabolism of various ribonucleoprotein particles. We employed time-gated Stimulated Emission Depletion (gSTED) microscopy to acquire superresolution microscopy images of the CB and surrounding nucleoplasm. We have visualized the CB scaffolding protein coilin using indirect immunofluorescence in situ. Our preliminary data clearly showed the sub-resolution structures of the CB (subCBs). Moreover, the substructures are also visible in the surrounding nucleoplasm and indicate that the CB is an aggregate of those basic building blocks (Fig.2-B). Here, we would like to present our work on a mathematical model based on the fundamental thermodynamic rules of condensation and phase-separation to describe the formation of membrane-less bodies. We will present superresolution fluorescence microscopy, photo-kinetic experiments and fast time-lapse live cell imaging results and progress of the work on determining of basic biophysical behavior of individual CB components. The project is interdisciplinary and combines advanced fluorescence microscopy techniques and mathematical modeling and simulations.

Figures:

Cajal bodies in HeLa cell nuclei. CBs are visualized by indirect immunofluorescence against CB scaffolding protein coilin (red), the nuclei are visualized via DAPI staining (blue). Bar 10 µm.

The CB in confocal microscope resolution (A) and gSTED microscopy (B). The Cajal body is visualized by indirect immunofluorescence against CB scaffolding protein coilin. The subCBs are visible in the surrounding nucleoplasm (arrows). Bar 2 µm.

To cite this abstract:

Michaela Blazikova, Anna Malinova, Ivan Novotny ; Mathematical modeling of Cajal body formation. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/mathematical-modeling-of-cajal-body-formation/. Accessed: December 2, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/mathematical-modeling-of-cajal-body-formation/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley