EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

Abstract number: 6886

Session Code: MS02-OP233

DOI: 10.1002/9783527808465.EMC2016.6886

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: 1D and 2D materials

Presentation Form: Oral Presentation

Corresponding Email: krishnad@tcd.ie

Dileep Krishnan (1), Rajib Sahu (2), Sebastian Peter (2), Ranjan Datta (2)

1. Advanced Microscopy Laboratory, Trinity College Dublin, Dublin, Irlande 2. Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Inde

Keywords: HRTEM, Monochromated EELS, Monolayers of 2D materials, optical absorption spectroscopy

Atomically thin monolayer transition metal dichalcogenides (TMDs) are a new class of two dimensional nano-material with promising optoelectronic, energy and novel device applications. One of the important features of many TMDs is that they undergo a crossover from indirect band gap in the bulk to direct band gap in the monolayer form [1]. While the monolayer properties of TMDs are unique (e. g. direct band gap), it may be illusive while fabricating practical devices because the cross over to indirect band gap occurs due to unavoidable electronic packaging and the property could change in close proximity of foreign substance. Therefore, there is an urge to stabilize such novel properties arising from the monolayer in the interface or in the bulk form. With this goal there is a candidate material already reported in the family, i.e. crystalline 1T-ReS2 [2]. In this work we have exploited high resolution electron energy loss spectroscopy (HREELS) to perform layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS2 and ReS2 at nanoscale. Areas with mono, bi, tri and multilayers of MoS2 and ReS2 have been identified using a electron microscope. The atomic resolution image of mono and multilayer MoS2 and ReS2 have been given in figure 2. For monolayer MoS2, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. The band gap values have been deduced after plotting Tauc-like plots for both direct and indirect band gaps from the EELS absorption spectra. An indirect band gap of 1.27 eV is obtained from the multilayers regions (see figure 1). Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS2. For ReS2 the band gap is direct and a value of 1.52 and 1.42 eV are obtained for the monolayer and multilayers, respectively (see figure 1). A direct to indirect band gap transition has been observed in MoS2 going from monolayer to bilyer but no such transition is observen in ReS2 The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.
[1] K. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
[2]S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y-S Huang, H. Ching-Hwa , J. Yan, D. F. Ogletree, S. Aloni, J. Ji, S. Li, J. Li, F.M. Peeters, and J. Wu, Nat. Comm. 5, 3252 (2014).

[3] K. Dileep, R. Sahu, Sumanta Sarkar, Sebastian C. Peter, and R. Datta, J. Appl. Phys. 119, 114309 (2016).

Figures:

Example experimental Tauc-like plots corresponding to direct and indirect band gaps for (a) & (b) monolayer MoS2, (c) & (d) multilayer MoS2, (e) & (f) monolayer ReS2 and (g) & (h) multilayer ReS2, respectively.

HRTEM images of (a) multilayer 2H-MoS2 along <0001>. The intensity profile across the columns is shown in the lower right inset, Intensity from Mo and S columns are almost same in this case. (b) monolayer 2H-MoS2. Mo and S atoms are marked. The diffractogram or FT is shown in the upper right inset, the intensity profile across columns is shown in lower right inset and intensity line trace gives higher signal for Mo compared to S. HRTEM of (c) monolayer distorted 1T-ReS2. The ‘N’ shaped Re4 cluster is highlighted. The DFT calculated Re4 clusters are shown in upper right inset. (d) FT of distorted 1T-ReS2. The superstructure spots are marked with the yellow circles.

Layer specific plots of band gaps and their types for (a) MoS2, and (b) ReS2. Note the direct to indirect band gap crossover for MoS2 from monolayer to bilayers.

To cite this abstract:

Dileep Krishnan, Rajib Sahu, Sebastian Peter, Ranjan Datta; Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/layer-specific-optical-band-gap-measurement-at-nanoscale-in-mos2-and-res2-van-der-waals-compounds-by-high-resolution-electron-energy-loss-spectroscopy/. Accessed: January 29, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/layer-specific-optical-band-gap-measurement-at-nanoscale-in-mos2-and-res2-van-der-waals-compounds-by-high-resolution-electron-energy-loss-spectroscopy/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley