EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Lanthanide distribution in NaLuF4:Gd,Yb,Er upconversion nanocrystals by EFTEM and EELS

Abstract number: 6637

Session Code: MS00-489

DOI: 10.1002/9783527808465.EMC2016.6637

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Nanoparticles: from synthesis to applications

Presentation Form: Poster

Corresponding Email: e.lu@mail.utoronto.ca

Elsa Lu (1), Jothirmayanantham Pichaandi (1), Lemuel Tong (1), M. A. Winnik (1)

1. Department of Chemistry, University of Toronto, Toronto, Canada

Keywords: EELS, EFTEM, upconversion nanocrystals

Lanthanide-doped nanoparticles (NPs) have gained interest within the last decade due to their photon upconversion properties. Upconversion is a multi-photon process in which two or more lower energy photons are converted to a higher energy photon by step-wise energy transfer between an absorber ion and an emitter ion (1). These upconversion nanoparticles (UCNPs) are a promising alternative to traditional organic fluorphores and quantum dots in the area of bioimaging because their excitation wavelength (980 nm) lies within an optical window where there is the least absorption and scattering by biomolecules (lower background signals), and they do not exhibit photobleaching or photoblinking.

One of the main challenges limiting their application is a trade-off between luminescence intensity and size of the NP. Smaller NPs exhibit less toxicity as they can be excreted through the urinary system, and they are better for intracellular imaging as the smaller size prevents interference with molecular trafficking within the cell, pharmacokinetics, and protein function; however, upconversion luminescence intensity decreases with size due to, in part, surface quenching from the presence of surface defects (2).

Few reports exist on the synthesis of sub-10 nm UCNPs, and even fewer exist on the synthesis of sub-5 nm UCNPs that show visible upconversion emission (3-6). We have recently synthesized two sizes of NaLuF4:Gd, Yb, Er UCNPs (ca. 4 nm and ca. 12 nm), through a facile one-pot method, that both show bright upconversion luminescence upon excitation by a 980 nm laser.

In order to better understand their luminescent properties, we have used energy filtered transmission electron microscopy (EFTEM) and electron energy loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) to investigate the distribution of the different lanthanides within the nanocrystal. Measurements were performed on an HF-3300 instrument operating at 300 kV.

The results suggest that Lu is enriched in the outer (shell) region of the nanocrystal, while Gd is enriched in the inner (core) region of the nanocrystal (Figure 1). Based on these results, we propose that the Lu shell protects the upconverting core from surface quenching, thereby allowing even 4 nm NPs to show upconversion luminescence. We also propose that the formation of the core-shell structure is mediated by the way the individual lanthanides nucleate in solution – Gd nucleates first to form the core, while Lu nucleates later to form the shell. This proposal is also in accordance with previous reports on the nucleation of lanthanide NPs (7).  

EFTEM and EELS in STEM are shown to be valuable tools to characterize the structure of lanthanide-doped UCNPs and to determine structure-property relationships, and can aid in the further development of these materials for various applications.  

(1)  Haase, M.; Schafer, H. Angew. Chem. Int. Ed., 2011, 50, 5808-5829.

(2)  Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev., 2010, 110, 2620-2640.

(3)  Liu, Q.; Sun, Y.; Yang, TS.; Feng , W.; Li, CG.; Li, FY. J. Am. Chem. Soc., 2011, 133, 17122-17125.

(4)  Ostrowski, A. D.; Chan, E.C.; Gargas, D. J.; Katz, E. M.; Han, G.; Schuck, P. J.; Milliron, D. J.; Cohen, B. E. ACS Nano, 2012, 6, 2686-2692.

(5)  Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Virginia, M.; Alteo, P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D.; Cohen, B. E. Nature Nanotechnology, 2014, 9, 300-305.

(6)  Rinkel, T.; Nordmann, J.; Raj, A. N.; Haase, M. Nanoscale, 2014, 6, 14523-14530.

(7) Mai, H. X.; Zhang, Y. W.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. J. Am. Chem. Soc., 2006, 128, 6426-6436.

Figures:

Figure 1. HR-TEM image of NaLuF4:Gd,Yb,Er UCNPs (a) with corresponding Gd (b) and Lu (d) EFTEM maps, and an overlayed image (Gd = blue, Lu = red) (c). All images were taken with an HF-3300 instrument operating at 300 kV. Scale bars are 10 nm.

To cite this abstract:

Elsa Lu, Jothirmayanantham Pichaandi, Lemuel Tong, M. A. Winnik; Lanthanide distribution in NaLuF4:Gd,Yb,Er upconversion nanocrystals by EFTEM and EELS. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/lanthanide-distribution-in-naluf4gdyber-upconversion-nanocrystals-by-eftem-and-eels/. Accessed: December 4, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/lanthanide-distribution-in-naluf4gdyber-upconversion-nanocrystals-by-eftem-and-eels/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley