EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Insights into mitochondrial protein import studied by cryoET

Abstract number: 8363

Session Code: LS08-S26

DOI: 10.1002/9783527808465.EMC2016.8363

Meeting: The 16th European Microscopy Congress 2016

Session: Life Sciences

Topic: Human health and disease

Presentation Form: Invited Speaker

Corresponding Email: vicki.gold@biophys.mpg.de

Vicki Gold (1), Piotr Chrościcki (2), Piotr Brągoszewski (2), Agnieszka Chacinska (2)

1. Max Planck Institute of Biophysics, none, Frankfurt am Main, Allemagne 2. The International Institute of Molecular and Cell Biology, none, Warsaw, Pologne

Keywords: cryoET, mitochondria, protein import, subtomogram averaging, TOM complex

As the primary cellular source of ATP, mitochondria form a vital bioenergetic, metabolic and signaling hub. Despite the presence of mitochondrial DNA, almost all mitochondrial proteins (99%) are nuclear encoded and are imported from the cytosol. Protein translocases in mitochondrial membranes are therefore essential for correct protein targeting and localisation. Mitochondrial dysfunction is implicated in ageing, as well as a growing number of human pathologies, including certain cancers, genetically inherited syndromes and neurodegenerative disorders such as Alzheimer’s disease. The biogenesis of mitochondrial proteins and import sites are therefore important factors that determine organelle functionality.

 

The broad aim of this research is to understand how protein import is correctly orchestrated and regulated by innovative approaches focussed on state-of-the-art electron cryo-tomography (cryoET). This technique is the method of choice for the study of proteins or complexes in situ (Figure 1). Samples are preserved by cryo-fixation, imaged in the electron microscope, and protein structures can be determined by subtomogram averaging (StA).

 

The majority of precursor proteins (preproteins) are actively imported into mitochondria from the cytosol through the Translocase of the Outer Membrane (TOM) complex, which forms a common entry gate for proteins that are subsequently targeted to various locations. For decades, it has been known that proteins can be imported into mitochondria post-translationally, after synthesis on ribosomes in the cytosol or in vitro. However, information regarding the organisation and distribution of mitochondrial protein import sites was sparse. To image active post-translational protein import in situ, we previously devised a new labelling strategy in which mitochondrial-targeted preproteins were arrested as two-membrane-spanning intermediates through both the TOM complex and the Translocase of the Inner Membrane (TIM23) complex concurrently (Gold, V. A. M. et al. (2014) Nat Commun 5, 4129). This work provided the first views of mitochondrial proteins in the act of import and enabled direct visualization of the number and location of active complexes for the first time (Figure 1). However, information regarding the cytosolic stage of mitochondrial precursor protein import and targeting was still lacking.

 

Most recently, we have developed a new method to investigate the cytosolic stage of mitochondrial protein targeting and import by biochemical techniques, cryo-ET and StA.  This reveals unprecedented details regarding different targeting pathways, shedding light on the interaction between importing proteins and their corresponding membrane-bound translocons. The consequences of these different modes of targeting and import site redistribution will be discussed in the context of mitochondrial protein biogenesis.

 

Legend to Figure 1

1. Top panel: mitochondria embedded in a layer of amorphous ice are imaged in the electron microscope.  Incremental tilts of the sample yield a series of projections from different viewing angles. The relative orientations of the mitochondrion (brown) and the macromolecular complex of interest (red) vary depending on the projection angle. Bottom panel: a 0° tilt projection image of a S. cerevisiae mitochondrion.

2. Top panel: a three-dimensional tomogram is reconstructed from the two-dimensional image series by computational back-projection. The molecular complex of interest is indicated (red, boxed). Bottom panel: a slice through a reconstructed tomogram of the mitochondrion shown in step 1. Labelled importing proteins (black spheres on the outer membrane are indicated (red arrowhead).

3. Top left and bottom panels: surface volume rendering is used to place complexes of interest back into three-dimensional space in order to visualize their distribution in a native-like context. Labelled preproteins (black spheres) are shown on the mitochondrial outer membrane (green). The inner membrane (blue) and crista membranes (yellow) are also shown. Top right panel: a slice through the reconstructed tomogram of a labelled preprotein (black sphere, red arrowhead) engaged in mitochondrial import.

Figures:

Figure 1. Workflow for cryoET of mitochondria, actively engaged in preprotein import. _x000D_Acknowledgements: Martin van der Laan, Raffaele Ieva, Nikolaus Pfanner, Misha Kudrayashev, Bertram Daum, Deryck Mills, Werner Kühlbrandt

To cite this abstract:

Vicki Gold, Piotr Chrościcki, Piotr Brągoszewski, Agnieszka Chacinska ; Insights into mitochondrial protein import studied by cryoET. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/insights-into-mitochondrial-protein-import-studied-by-cryoet/. Accessed: December 3, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/insights-into-mitochondrial-protein-import-studied-by-cryoet/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley