EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

In Situ TEM Characterization of Asphaltene Formation in Crude Oil

Abstract number: 5922

Session Code: IM02-204

DOI: 10.1002/9783527808465.EMC2016.5922

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Micro-Nano Lab and dynamic microscopy

Presentation Form: Poster

Corresponding Email: arne.janssen@manchester.ac.uk

Arne Janssen (1), Nestor Zaluzec (2), Matthew Kulzick (3), Greg McMahon (1), M.G. Burke (1)

1. School of Materials , The University of Manchester, Manchester, Royaume Uni 2. Electron Microscopy Centre, Argonne National Laboratory, Chicago, Etats-Unis 3. BP Research Centre, Naperville, Etats-Unis

Keywords: Asphaltene, In-situ TEM, Liquid Cell TEM Holder

Asphaltenes are aromatic hydrocarbons and defined as a solubility class as the n-heptane-insoluble, toluene-soluble fraction of a crude oil or carbonaceous material. They are always present in crude oils and influence the oil properties. Phase changes, viscosity, and interfacial properties of crude oils are strongly affected by asphaltenes. Problems arise when asphaltenes are exposed to changes in temperatures, pressure, or composition, and they become insoluble in the oil. When asphaltenes precipitate, they can deposit onto the walls of the pipe, inhibiting the flow of oil and can end up blocking the pipe entirely. Although, the negative impact of asphaltenes to the oil industries is well known, however, the exact mechanism by which asphaltene flocculation and aggregation occurs is still not fully understood.   

         Over the last decade methods have been developed to characterize and model the mechanisms of asphaltene flocculation, aggregation and precipitation. [1, and references listed therein].  To date, there have been TEM analyses of asphaltenes that have impacted petrochemical research activities [2].  However, the disadvantage is that the asphaltene sample may be altered as a consequence of sample preparation.  With the development of commercially available liquid cell holders for in situ TEM there is now the opportunity of direct observations of the oil emulsion system at the nm scale in their natural environment.

         Initial in situ TEM experiments of asphaltene formation and aggregation were conducted in a FEI Talos F200X TEM operated at 200 keV using the Protochips Poseidon P210 analytical liquid cell holder.  A light crude oil with a nominal asphaltene content of 3.7% was mixed with heptane to initiate flocculation of the asphaltenes in the liquid in situ TEM cell. Our first results indicate that the aggregation process is driven by the initial formation of 10-20 nm spherical colloids. These colloids cluster to flocculates in a range of several tens to hundreds of nanometers in the oil-heptane emulsion (Figure 1). The flocculation sequence is in good agreement with the proposed Yen model [1]. Further asphaltene flocculation experiments from different crude oils and their morphology evolution will be compared and discussed. In addition, opportunities and limitations for using in situ liquid cell holders for studying asphaltene flocculation in an analytical TEM will be described.

 

References:

[1] O.C. Mullins, Energy & Fuels, 24, (2010), p. 2179-2207.

[2] L. Goual et al, Langmuir, 30, (2014), p. 5394-5403.

 

Acknowledgement:

The authors would like to acknowledge the funding and technical support from BP through the BP International Centre for Advanced Materials (BP-ICAM), which made this research possible.

Figures:

Figure 1. STEM-HAADF images of asphaltene flocculates in oil + heptane emulsion in an in situ liquid cell TEM holder.

To cite this abstract:

Arne Janssen, Nestor Zaluzec, Matthew Kulzick, Greg McMahon, M.G. Burke; In Situ TEM Characterization of Asphaltene Formation in Crude Oil. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/in-situ-tem-characterization-of-asphaltene-formation-in-crude-oil/. Accessed: September 25, 2023
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/in-situ-tem-characterization-of-asphaltene-formation-in-crude-oil/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley