EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Improvement of a 40-120 kV analytical TEM system for electron beam irradiation sensitive nano materials

Abstract number: 6106

Session Code: IM03-282

DOI: 10.1002/9783527808465.EMC2016.6106

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: New Instrumentation

Presentation Form: Poster

Corresponding Email: toshie.yaguchi.yy@hitachi-hightech.com

Toshie Yaguchi (1), Keiji Tamura (1), Takashi Kubo (1), Masaki Kondo (1), Hiromi Mise (2), Hiroaki Matsumoto (3)

1. Electron Microscope Systems Design 2nd Dept., Hitachi High-Technologies Corp., Hitachinaka-shi, Japon 2. Electron Microscope Systems Design 1st Dept., Hitachi High-Technologies Corp., Hitachinaka-shi, Japon 3. Application Development Dept., Hitachi High-Technologies Corp., Hitachinaka-shi, Japon

Keywords: catalysts, electron beam irradiation sensitive, high resolution TEM, nano materials, selected-area electron beam diffraction

The performance of advanced nanomaterials such as the electrode catalysts of fuel cells is closely related to their composition, morphology and crystal structure. At the nanoscale, high resolution TEM is essential to understand the relationship between structure and electrochemical properties. In case of TEM characterization of chemically synthesized nanomaterials, highest attention should be paid to electron irradiation damage. If the observation conditions, especially accelerating voltage and electron beam density, are not optimized, an initial structure will be changed. For example, different from general inorganic materials, some materials such as chemically synthesized amorphous metal nano particles are quickly crystallized by the electron irradiation and it often mislead the characterization. Therefore, careful control of illumination conditions and irradiation time are essential for the analysis of those composites. The selection of an optimal accelerating voltage based on composition is one option to reduce irradiation damage.  In addition, sample observation with lower accelerating voltages is advantageous to generate higher image contrast.

Since standard 120 kV TEMs are optimized for applications at lower magnification with higher contrast requirements, we have developed an ultra high resolution objective lens (UHRLENS) to extend the application in nanomaterial field of a 40-120 kV HT7700 analytical TEM [1,2]. It mounted with the UHRLENS which provides lattice resolution of 0.2 nm with on-axis illumination at 120 kV and accommodates a high solid angle silicon drift detector of an energy dispersive X-ray (EDX) analyzer. Figure 1 shows an example of high resolution and high contrast observation of the fuel cell electrode catalyst by the newly developed TEM. Lattice images of platinum nanoparticles (lattice spacing: 0.23 nm) and the carbon support (lattice spacing: 0.34 nm) were observed clearly at an acceleration voltage of 120 kV.  The binder is clearly observed with sufficient contrast.

To analyze the crystal structure of nanomaterials, we have used a selected-area electron beam diffraction (SAED) technique with a micro-fabricated SA aperture hole rather than nano-probe diffraction [3]. Because the damage caused by the electron beam irradiation was much less than that of the nano-probe electron diffraction technique. An FIB fabricated apertures with the diameter of 1mm are equipped for structural analysis of individual nanomaterial. The smallest selected area diameter on the specimen is calculated to be 18nm. In case of characterization of  nano materials, the spatial error in SAED pattern due to a spherical aberration is not serious because;

1) No high-order diffraction spots available from nano-materials such as nano particles

2) High order diffraction  spots are not used in practice

To improve operability for acquirements of the SAED, a new automatic operation function, called “nano analysis function”, is produced. This function enables automatic acquirements of SAED at plural analysis positions pre-designated by a user. The analysis position of the SAED is precisely controlled by an image shift coil mounted just below the objective lens. The minimum diameter of SA aperture is 1 um, which corresponds to the diameter of the selected area of 18 nm on the specimen. Figure 2 shows a TEM image (a) of an asbestos specimen with the corresponding SAED patterns (b) acquired by the nano analysis function. The selected area of each analysis position is displayed by a circle on the TEM image.  The diffraction patterns of the acquired SAED images can be analyzed with an optional function of Hitachi EMIP software called “diffraction analysis function”. This function enables automatic measurement of diffraction spot intervals and assumption of elements contained in the selected area of the specimen from the database.

The conventional 40-120kV analytical TEM has been improved for characterization of electron beam sensitive nanomaterial by high-resolution TEM with high contrast. The improved functions made it possible to identify the crystal structure by selected nano area electron diffraction technique.

References:

[1] Kubo, T., et al, 2013.  Microsc.Microanal. 19 (Suppl 2), 1328.

[2] Yaguchi, T., et al, 2015.  Microsc.Microanal. 21 (Suppl 3), 1817.

[3] Kamino T., et al, Proc.of IMC 18, Prague, Czech Republic (2014) IT-6-P-1552.

Figures:

Figure 1 HREM image of binder (Nafion) coated Pt/GC electrocatalyst observed at an acceleration voltage of 120 kV.

Figure 2 (a) TEM image of an asbestos specimen with the corresponding area for SAED.

Figure 2 (b) The corresponding SAED patterns acquired by the nano analysis function.

To cite this abstract:

Toshie Yaguchi, Keiji Tamura, Takashi Kubo, Masaki Kondo, Hiromi Mise, Hiroaki Matsumoto; Improvement of a 40-120 kV analytical TEM system for electron beam irradiation sensitive nano materials. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/improvement-of-a-40-120-kv-analytical-tem-system-for-electron-beam-irradiation-sensitive-nano-materials/. Accessed: March 2, 2021
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/improvement-of-a-40-120-kv-analytical-tem-system-for-electron-beam-irradiation-sensitive-nano-materials/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Pixelated STEM detectors: opportunities and challenges
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Atomic relaxation in ultrathin fcc metal nanowires

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2021 John Wiley & Sons, Inc. All Rights Reserved.
Wiley
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.