EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Improved Quantitative Compositional Analysis of γ’ and γ’’ in Additively Manufactured Alloy 718 Using STEM X-ray Energy Dispersive Spectrometry

Abstract number: 6841

Session Code: MS01-OP214

DOI: 10.1002/9783527808465.EMC2016.6841

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Structural materials, defects and phase transformations

Presentation Form: Oral Presentation

Corresponding Email: austin.wade@manchester.ac.uk

C. Austin Wade (1, 2), Giacomo Bertali (1), Thijs Withaar (2), David Foord (3), Bert Freitag (2), Grace Burke (1)

1. Materials Performance Centre, The University of Manchester, Manchester, Royaume Uni 2. FEI Company, Eindhoven, Pays-Bas 3. FEI Company, Hillsboro, Etats-Unis

Keywords: aberration-corrected STEM, Additive Manufacturing, Alloy 718, EDX, Quantitative XEDS

Selective laser melting (SLM) is an additive manufacturing technique where successive laser beam passes are used to melt metal powder which forms a solid layer on solidification with high densification, little material waste, and large design freedom [1]. The application of SLM to repair high temperature components that often need reconditioning requires an understanding of the microstructural and compositional developments of the chosen material throughout the SLM process. Alloy 718 is a Ni-Cr-Fe-Nb-Ti-Al alloy used in applications where high strength is needed while maintaining corrosion and creep resistance, making this alloy a prime candidate for SLM structural and compositional characterization. Precipitation hardening is one of the primary strengthening mechanisms of Alloy 718, where intermetallic phases of L12-ordered Ni3(Al, Ti) (γ’) or D200-ordered Ni3(Nb, Ti) (γ’’) may form coherent precipitate particles in the face-centered cubic matrix (γ) [2]. Additional phases that may be present in the microstructure of Alloy 718 include D0a-ordered Ni3Nb (δ), MC, M6C, M23C6, and (Ni, Cr, Fe)2(Nb, Mo, Ti) Laves [3, 4]. The complex microstructures in this alloy system are further complicated by the multiple heating and cooling cycles present in the SLM process, thus requiring characterization on the nanoscale in order to understand the microstructural development during processing.                           

Analytical electron microscopy allows the identification of the particular microstructural components on the micro and nano scales.  Alloy 718 is of particular interest in that the γ’ precipitates can nucleate on the (001) surface of γ’’ precipitates in the as-SLM condition. The structure and chemical composition of these precipitates was investigated through X-ray energy dispersive spectrometry (XEDS) using an aberration-corrected FEI Titan G2 ChemiSTEM equipped with the Super X EDX X-ray detector configuration. Figure 1 shows a γ’’ precipitate with γ’ precipitates on the two elongated sides of the γ’’ in both scanning transmission electron microscopy (STEM) bright-field (BF) and high-angle annular dark-field (HAADF) imaging modes. The understanding the formation of γ’/γ’’ requires both structural information about the interface and chemical analysis across the interface of the two precipitates. Figure 2 displays 4 XEDS spectrum images of Ni, Nb, Ti, and Al showing the location of these elements throughout the precipitates present in the γ matrix. Quantitative XEDS analysis was performed on an as printed Alloy 718 specimen where the γ matrix composition was found to be 50.5 wt % Ni, 1.4 wt % Nb, 0.3 wt % Al, and 0.09 wt % Ti with γ’ and γ’’ having compositions of 66.6 wt % Ni, 7.13 wt % Nb,  3.18 wt % Ti, and 2.4 wt % Al and 65.0 wt % Ni, 25.4 wt % Nb, 0.37 wt % Al and 3.6 wt % Ti, respectively.             

References:

[1] Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R., Int. Mater. Rev., 2012, 57, 133-164.

[2] Azadian, S., Wei, L.Y., and Warren, R., Mater. Charact., 2004, 53, 7.

[3] Burke, M.G. and Miller, M.K., J. de Physique, 1989, 50, C8 395-400.

[4] Rama, J.G.D., Reddya, A.V., Raob, K.P., Reddyc, G.M., Sundar, J.K.S., J. Mater. Process. Tech., 2005, 167, 73.

Figures:

Figure 1 - STEM images of γ’’ particle in γ matrix with γ’ present on the sides of the (001) γ’’ surface shown in (a) BF-STEM and (b) HAADF-STEM.

Figure 2 – XED specrum images of (a) Ni, (b) Nb, (c), Ti, and (d) Al showing the enrichment of Ni and Ti in both γ’ and γ’’ compared to the matrix γ as well as increased Al in the γ’ and increased Nb in the γ’’.

To cite this abstract:

C. Austin Wade, Giacomo Bertali, Thijs Withaar, David Foord, Bert Freitag, Grace Burke; Improved Quantitative Compositional Analysis of γ’ and γ’’ in Additively Manufactured Alloy 718 Using STEM X-ray Energy Dispersive Spectrometry. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/improved-quantitative-compositional-analysis-of-%ce%b3-and-%ce%b3-in-additively-manufactured-alloy-718-using-stem-x-ray-energy-dispersive-spectrometry/. Accessed: May 17, 2022
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/improved-quantitative-compositional-analysis-of-%ce%b3-and-%ce%b3-in-additively-manufactured-alloy-718-using-stem-x-ray-energy-dispersive-spectrometry/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Pixelated STEM detectors: opportunities and challenges
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2022 John Wiley & Sons, Inc. All Rights Reserved.
Wiley
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.