EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

High resolution EELS on individual carbon nanotubes by monochromated TEM

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: 1D and 2D materials

Presentation Form: Oral Presentation

Corresponding Email:

Ryosuke Senga (1), Thomas Pichler (2), Kazu Suenaga (1)

1. Nanomaterial research institute, AIST, Tsukuba, Japon 2. Faculty of Physics, University of Vienna, Vienna, Autriche

Keywords: carbon nanotubes, EELS, Low voltage, monochromator, quantum object

            Single-walled carbon nanotube (SWNT) has been known to exhibit a wide range of electronic properties upon its atomic arrangement [1,2]. However it is still difficult to directly correlate the distinct electronic properties with its atomic structure from an individual carbon nanotube. Here, we successfully demonstrate highly localized electronic properties of individual carbon nanotubes with precise atomic structures by means of transmission electron microscopy (TEM) consisting of a monochromator.

            We have used a JEOL TEM (TripleC#2) equipped with a Schottky field emission gun, a double Wien filter monochromator and delta correctors. The energy resolution is adjustable from 30 to 200 meV by choosing the energy selecting slits in the dispersion plane of the monochromator. We have performed the electron energy loss spectroscopy (EELS) on individual freestanding SWNTs with the scanning TEM (STEM) mode at 60 kV. The target SWNTs are also imaged by both STEM/TEM modes to fully assign their atomic structures.

           Figure 1(a) presents a TEM image of two closely aligned SWNTs (inset) and their C K-edge (C1s) spectra. The chirality of thicker SWNT (top) and thinner one (bottom) are assigned as (9, 7) and (6, 5), respectively. Each spectrum has several sub-peaks on the π* response and exhibits completely different features. The line shape analysis [3] suggests that the π* response of (6, 5) tube consists of four sub-peaks related to the van Hove singularity (vHs) (1s →E1*, E2*, E3* and  E4*) and a broad π* resonance (Fig. 1(b)). The position of the sub-peaks fairly consists with the vHs in the shifted ab-initio DOS [3] (inset in Fig. 1(b)). The relative intensities are possibly influenced by core-hole effects. The valence-loss spectra taken from the same SWNTs also exhibit the peaks related to the vHs (Ei → Ei* (i=1,2,…)). However it is difficult to distinguish the two closely aligned SWNTs from the valence-loss spectra because the large delocalization mixes the peaks for both SWNTs. This means that the core-loss spectra has a much higher special resolution and reflects more localized electronic structures.

            Then, we have experimentally investigated how the core-loss spectra changes corresponding to nonperiodic structures. Figure 2 shows STEM images of a typical hybrid SWNT and its C K-edge (C1s) spectra. We have confirmed from TEM image (not shown here) that the hybrid SWNT involves a serial junction between the thinner (11, 1) semiconducting part and the thicker (10, 10) metallic part. The C K-edges (i to x) presented in Figs. 2(b) and 2(c) are obtained when the electron probe is scanned across the broken lines (i to x) in Fig. 2(a). The π* peaks in the junction part (iv to vii) are different form the spectra for either (10, 10) and (11, 1) and show new peaks (black arrows in Fig. 2(c)) reflecting the distinct electronic structures. Such a highly localized measurement of electronic properties for individual carbon nanotubes has never been realized by any other methods.

 

References:


Figures:

Figure 1. The fine structures of C K-edge for two closely aligned SWNTs. The thicker SWNT (top) and the thinner one (bottom) are assigned as (9, 7) and (6, 5), respectively, from a TEM image (inset in (a)). (b) The fine structure of a (6, 5) tube and its line shape analysis. The lower inset shows the broadened ab initio DOS as calculated in Ref. [3] for comparison.

Figure 2. EELS spectra for a hybrid SWNT serial junction consisting of metallic and semiconducting SWNTs. The spectra (i to x) in (b) and (c) correspond to the dotted lines (i to x) across the SWNT in (a).

To cite this abstract:

Ryosuke Senga, Thomas Pichler, Kazu Suenaga; High resolution EELS on individual carbon nanotubes by monochromated TEM. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/high-resolution-eels-on-individual-carbon-nanotubes-by-monochromated-tem/. Accessed: December 3, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/high-resolution-eels-on-individual-carbon-nanotubes-by-monochromated-tem/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley