Thin-film-composite (TFC) membrane was prepared through interfacically polymerizing m-phenylene-diamine (MPD) and trimesoyl chloride (TMC) on top of a poly-sulfone substrate to form an ultrathin active polyamide layer, which is excellent in hydrophilicity, mechanical stability, thermal stability and hydrolytic stability. Scanning electron microscopy (SEM) is suitable for direct observation of TFC membrane structure, especially for superfine structure of ultrathin functional layer. The skin layer of TFC membrane is much denser than ultrafiltration membrane and its microstructure is more difficult to observe by SEM with regular way. At present, there are two common methods for fracturing membrane: brittle fracture of liquid nitrogen, embedded section. In addition, there are two less common methods with the help of precision instruments, like Focused Ion Beam cutting and Ion Milling technologies. We compare the advantages and disadvantages of four methods, and put forward a more convenient, practicable and effective method for SEM cross-sectional analysis.
(1)Embedded Section: This method will be finished after embedding in epoxy resin, solidifying in thermostat and slicing by microtome. It has strict technical requirements for the operator. The cross section is damaged badly in the Fig.1.
(2)FIB cutting: We obtain the cross-sectional sample using Carl Zeiss AURIGA Cross Beam FIB/SEM. FIB probe is Ga ion beam. The operating voltage and current is 30kV and 50pA respectively. The ion beam intensity is too high to keep the integrity of film structure. The cortex is damaged in the Fig.2. So this method is not suitable for soft materials.
(3)Ion milling: The process is completed by IM4000 of HITACHI. We select the section grinding mode to reduce the damage of structure, with the help of liquid nitrogen cooling mode. Although this method is somewhat better than FIB cutting, we still can’t see the cortex distinctly.
(4)Brittle Fracture of Liquid Nitrogen: The cost of this method is very low. Although it’s easy to use without the aid of other equipment, the SEM microstructure is difficult to observe directly and clearly. Fig.4a shows the low and high magnification images. We can see the film cross section is distorted and the cortex sagged.
The above methods have many limitations, because the toughness of membrane is too big to fracture easily. We have developed an improved sample frozen and fractured technology: the TFC membrane has swollen in ethanol at room temperature for several minutes, and then we put the sample in liquid nitrogen and fracture it with a certain slope. The functional cortex can be observed directly and effectively in the Fig.4b below.
Figures:

SEM topography at low (top) and high (down) magnification

SEM topography at low (top) and high (down) magnification

SEM topography at low (top) and high (down) magnification

SEM topography by routine(a) and improved (b) brittle fracture of liquid nitrogen[inset:magnification details]
To cite this abstract:
Wenqing Huang, Xiaopei Miao; Effect on the SEM topography of different sample preparation methods for thin-film-composite membrane. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/effect-on-the-sem-topography-of-different-sample-preparation-methods-for-thin-film-composite-membrane/. Accessed: September 21, 2023« Back to The 16th European Microscopy Congress 2016
EMC Abstracts - https://emc-proceedings.com/abstract/effect-on-the-sem-topography-of-different-sample-preparation-methods-for-thin-film-composite-membrane/