Nanomaterials represent today a major economic and technological issue, because of their innovating properties rising from their nanometric size (1 to 100 nm) and in particular of their chemical compositions, sizes, specific surfaces and varied surface qualities. These nanomaterials are present in sectors as varied as building, car industry, chemistry, energy or health, and therefore can be found in natural ecosystems without knowing yet their potential impacts.
In this context, trophic transfer of gold nanoparticles (AuNPs) between periphytic biofilms and a periphytophage fish Hypostomus plecostomusas final consumer has been studied in laboratory. Histological analyses have been performed at the two trophic levels with a particular focus on transmission electronic microscopy (TEM) observations in fishes.
In upstream running waters, periphytic biofilms are constituted by the association of micro-organisms secreting an organic polymermatrix. Diatoms (brown microalgae) as a major component of these biofilms ensure a great part of the primary productionin the upstream running watersand are at the basis of their food web.
A contamination of these microorganisms by AuNPs could be vector of a trophic transfer of these nanomaterials along the trophic chain. Thus we determined if a trophic transfer of AuNPs was possible between natural periphytic biofilms and the fish Hypostomus plecostomus. H. Plecostomus is a tropical benthic fish with a ventral mouth modified into suction cup and adapted to graze the periphytic biofilms.
Analyses of gold bio-accumulation in fishes were performed after 7 days of contamination, followed by a period of depuration of 14 days. These analyses were supplemented by an observation of AuNPs localization in tissues and cells by TEM and the toxic effects of AuNPs were also observed in them.
The results showed a trophic transfer of AuNPs between biofilms and fish, with a significant gold bioaccumulation in several organs (heart, spleen, liver, muscles). TEM observations revealed also a concentration of AuNPs in the spleen of the fish, localized especially in the erythrocytes and an important destructuration of the muscle fibers. After depuration, AuNPs totally disappeared from the erythrocytes, but were concentrated in the melanomacrophages, along with a recuperation of the muscles fibers, suggesting an important capacity of this fish to detoxify this type of nanoparticles.
To cite this abstract:
Nathalie Mesmer-Dudons, Aurore Chongaud, Stephane Mornet, Agnès Feurtet-Mazel, Régine Maury-Brachet, Magalie Baudrimont; Decontamination capacity of a fish after trophic contamination with gold nanoparticules: ultrastructural study. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/decontamination-capacity-of-a-fish-after-trophic-contamination-with-gold-nanoparticules-ultrastructural-study/. Accessed: December 4, 2023« Back to The 16th European Microscopy Congress 2016
EMC Abstracts - https://emc-proceedings.com/abstract/decontamination-capacity-of-a-fish-after-trophic-contamination-with-gold-nanoparticules-ultrastructural-study/