EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Comparison of propagation-based phase contrast tomography and full-field optical coherence tomography on bone tissue

Abstract number: 6266

Session Code: IM01-154

DOI: 10.1002/9783527808465.EMC2016.6266

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: Tomography and Multidimensional microscopy

Presentation Form: Poster

Corresponding Email: david.rousseau@creatis.insa-lyon.fr

Sylvaine DI TOMMASO (1), Hugo ROSITI (1), Max LANGER (1), Carole FRINDEL (1), Cécile OLIVIER (1), Françoise PEYRIN (1), David ROUSSEAU (1)

1. Univ Lyon, INSA‐Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F‐69621, LYON, France, CREATIS, Lyon, France

Keywords: bones, Full field OCT, Synchrotron imaging

The current huge development of new 3D microscopic techniques (synchrotron microtomography, optical coherence tomography, light sheet microscopy, …) opens a large variety of new perspectives for life sciences. The contrasts of these new microscopies are mostly well understood on samples of known material content such as those used in physics or instrumentation studies. The situation is different when it comes to the interpretation of the contrasts observed with complex heterogeneous media found in biology. Therefore determining which 3D microscopy technique is suited for which biological question is a topic of current interest (see [1,2] for instance in our group).

In this communication, we propose a comparison of the contrast observed with full-field optical coherence tomography (OCT) and propagation-based phase contrast tomography (PCT) on bone tissue at similar spatial resolution. A first comparison of OCT with standard absorption microtomography was given in [3] for bones and we extend this comparison to PCT which is known to provide enhanced contrast on bones at multiple scales [4]. The contrast of both these techniques are a priori interesting to be compared since they both rely on discontinuities of refraction index. This produces phase shift in PCT which operates in the X-ray domain with a monochromatic beam (generated by a synchrotron) while this generates direct intensity reflexion with OCT which only resorts to white light in the visible domain.

As visible in Figure 1, we specifically focussed our attention on the contrast observed in both techniques around the same bone structural unit, a so-called osteon, at a microscopic scale with images of same spatial resolution (voxel size 3.5µm). It happens that the osteons are visible in PCT while they are not perceptible with conventional absorption micro computed tomography. Also, concentric lamellae, corresponding to the so-called Harvers system, appear clearly visible in OCT while they are not perceptible with PCT at this spatial resolution. The contrast between the osteon and the surrounding bone tissue, is found in terms of homogeneous regions in PCT. However, this less spatially resolved contrast in PCT is constant throughout the sample while it is spatially variable in OCT where a continuous degradation of the contrast is observed along the direction Z of the propagation of light. We found, as given in Figure 2, that a certain spatial average of some 30 µm along Z was able to improve optimally the contrast across the concentric lamellae when inspected at the surface (up to 500 µm depth) of the sample with OCT. This contributes to establish quantitatively the complementarity of OCT and PCT for the characterization of bones at the microscopic scale.

 

References:

 

[1] Rousseau, D., Widiez, T., Tommaso, S., Rositi, H., Adrien, J., Maire, E., Langer, M., Olivier, C., Peyrin, F. Rogowsky, P. (2015). Fast virtual histology using X-ray in-line phase tomography: application to the 3D anatomy of maize developing seeds. Plant methods, 11(1), 1.

 

[2] Rositi, H., Frindel, C., Wiart, M., Langer, M., Olivier, C., Peyrin, F., Rousseau, D. (2014). Computer vision tools to optimize reconstruction parameters in x-ray in-line phase tomography. Physics in medicine and biology, 59(24), 7767.

 

[3] Kasseck, C., Kratz, M., Torcasio, A., Gerhardt, N. C., van Lenthe, G. H., Gambichler, T., . Hofmann, M. R. (2010). Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample. Journal of biomedical optics, 15(4), 046019-046019.

 

[4] Peyrin, F., Dong, P., Pacureanu, A., & Langer, M. (2014). Micro-and Nano-CT for the Study of Bone Ultrastructure. Current osteoporosis reports, 12(4), 465-474.

 

Acknowledgement : This work was supported by the European Synchrotron Research Facility (ESRF, project LS-2290) through the allocation of beam time.

Figures:

Figure 1: Observation of the same bone sample in PCT and OCT with a zoom on an osteon at the same pixel size of 3.5 μm.

Figure 2: Effect of the averaging on the contrast to noise ratio along the concentric lamellae in OCT. Each slice is 1 μm thick in Z. The plots are the gray levels along the red solid line.

To cite this abstract:

Sylvaine DI TOMMASO, Hugo ROSITI, Max LANGER, Carole FRINDEL, Cécile OLIVIER, Françoise PEYRIN, David ROUSSEAU; Comparison of propagation-based phase contrast tomography and full-field optical coherence tomography on bone tissue. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/comparison-of-propagation-based-phase-contrast-tomography-and-full-field-optical-coherence-tomography-on-bone-tissue/. Accessed: January 20, 2021
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/comparison-of-propagation-based-phase-contrast-tomography-and-full-field-optical-coherence-tomography-on-bone-tissue/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Pixelated STEM detectors: opportunities and challenges
  • Atomic relaxation in ultrathin fcc metal nanowires
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2021 John Wiley & Sons, Inc. All Rights Reserved.
Wiley
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.