EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Characterization of bimetallic PdAg nanoparticle arrays by the diblock copolymer micelle approach

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Nanoparticles: from synthesis to applications

Presentation Form: Poster

Corresponding Email:

Eric Ehret (1), Emmanuel Beyou (2), Grigory V Mamontov (3), Tatiana A. Bugrova (3), Bruno Domenichini (4), Swamy Prakash (1), Mimoun Aouine (1), Francisco José Cadete Santos Aires (1, 3)

1. Institut de Recherches sur la Catalyse et l'Environnement de Lyon, Université de Lyon, UMR5256 CNRS/Université Lyon1, Villeurbanne, France 2. Ingénierie des Matériaux Polymères, Université de Lyon, UMR 5223 CNRS/Université Lyon 1/INSA Lyon/UJM Saint-Etienne, Villeurbanne, France 3. Laboratory of Catalytic Research, National Research Tomsk State University, Tomsk, Russie 4. Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, UMR 6303 CNRS, Dijon, France

Keywords: arrays of nanoparticles, dicblock copolymer micelles, PdAg

Bimetallic nanoparticles (NPs) display unique properties drastically different from those of the corresponding single-component particles. These properties are assumed to result from both the electronic and structural effects of the bimetallic NP. As these properties depend also on the preparation conditions, the synthesis of bimetallic NPs with accurately controlled structures and compositions is essential to obtaining advanced materials for electronic, magnetic, optic and catalytic properties. In the present study, 2D ordered arrays of bimetallic PdAg NPs were successfully synthesized via the copolymer micelle approach and characterized by various spectroscopic and microscopic characterization methods. A special focus was laid on the influence of the type of reduction treatments on the chemical nature and the stability of the PdAg NPs. A comparison with the synthesis of single metal (Pd and Ag) NPs obtained by the same method was made.

A series of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers of various compositions and molecular weights was synthesized by nitroxide mediated radical polymerization using an alkoxyamine unimolecular initiator (Styryl-SG1). Intermolecular interactions between the PdCl2 and/or AgNO3 salts and P4VP micellar core and formation of nanoparticles from the micellar complex were investigated by various spectroscopic (UV-vis, XPS) and microscopic (AFM, HRTEM/EDX) characterization methods.

Once the base solutions were made, three ways to produce the final arrays of bimetallic NPs were investigated (Figure 1). One consisted in using an oxygen-plasma treatment after dip-coating of the SiO2 surface (Figure 1a); this method uses the large amount of electrons generated by the plasma to reduce the metallic cations and lead to the formation of the NPs that eventually oxidize under the oxygen-plasma. A second method consisted in introducing a reducing agent (hydrazine) to the base solution (Figure 1b-path1). The third method consisted on flowing a vapour of the reducing agent (hydrazine) over the film after dip-coating of the SiO2 surface (Figure 1b-path2). Spectroscopic and microscopic characterization of the resulting films before and after reduction showed that the two first methods consistently lead to the formation of rather regular arrays of NPs. In the case of the films before reduction we observe that, for the three methods, the metallic loaded micelles preferentially arrange to form a quasi-hexagonal pattern on the carbon coated copper grid; a close observation of the P4VP cores revealed a fine grain substructure inside every micelle corresponding to ultrasmall (bi)metallic NPs (Figure 2e). After reduction either by oxygen-plasma or by hydrazine in the solution (Figure 2) we obtain rather organized arrays of bimetallic NPs. The NPs have uniform sizes (Figure 2d-insert) and compositions. Unlike the NPs obtained by oxygen plasma, those obtained by hydrazine in the solution are not oxidized. A full characterization of the physicochemical properties of the NPs was enabled by the use of different methods (ICP, AFM, HRTEM/EDX, XPS, UV-Vis). 

The copolymer micelle approach is an excellent method to obtain ordered arrays of bimetallic nanoparticles supported on flat surfaces with controlled sizes, spacing and compositions [1]. These collections of NPs can thus be used as model catalysts (for COV abatement in the case of PdAg) where important parameters that influence their catalytic behaviour can be finely monitored and modulated.[2]

References

Figures:

Figure 1: Methods used to produce the arrays of PdAg nanoparticles: (a) oxygen-plasma; (b) Hydrazine in solution or hydrazine vapour. (see text for details)

Figure 2: XPS (a) and TEM/HRTEM (b-e) results for the arrays of PdAg NPs supported on SiO2 obtained by the method using hydrazine as reducing agent in the solution.

To cite this abstract:

Eric Ehret, Emmanuel Beyou, Grigory V Mamontov, Tatiana A. Bugrova, Bruno Domenichini, Swamy Prakash, Mimoun Aouine, Francisco José Cadete Santos Aires; Characterization of bimetallic PdAg nanoparticle arrays by the diblock copolymer micelle approach. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/characterization-of-bimetallic-pdag-nanoparticle-arrays-by-the-diblock-copolymer-micelle-approach/. Accessed: December 3, 2023

Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/characterization-of-bimetallic-pdag-nanoparticle-arrays-by-the-diblock-copolymer-micelle-approach/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites


The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley