EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

Benefits of angular and energy separation of slow signal electrons in SEM

Abstract number: 5865

Session Code: IM03-258

DOI: 10.1002/9783527808465.EMC2016.5865

Meeting: The 16th European Microscopy Congress 2016

Session: Instrumentation and Methods

Topic: New Instrumentation

Presentation Form: Poster

Corresponding Email: m-sarka@jfe-steel.co.jp

Sarka Mikmekova (1), Haruo Nakamichi (1), Masayasu Nagoshi (1)

1. Analysis & Characterization Research Dept., JFE Steel Corporation, Kawasaki, Japon

Keywords: in-lens detection, scanning low energy electron microscopy, Surface Sensitivity

Recently developed scanning electron microscopes (SEM) are equipped by sophisticated detection systems, which offer very effective energy and angular separation of the signal electrons and extraordinary detection flexibility. The signal electrons can be collected by various types of detectors and character of the detected signal is possible to affect by many parameters (e. g. optical configuration of the column, detection geometry, presence of the specimen bias, etc.). Understanding of the detected signal origin and correct interpretation of the micrographs become very difficult, which hampers utilizing of full potential of modern SEMs.

Experiments have been performed with a novel Trinity detection system (Scios, FEI Comp.) consisting of three in-lens detectors:  the T1 and the T2 detectors located inside the final lens and the T3 detector situated inside the column just below the aperture strip (Fig. 1). The instrument is also equipped by a standard E-T detector (ETD) situated in conventional position. There is a possibility of simultaneous detection of all 4 images (i.e. T1, T2, T3 and ETD) and different type of information about the specimen can be achieved at the same time.

Oxide inclusions embedded in a conventional steel was used as an experimental material, which secures presence of the topographic, material and crystal orientation contrast in the micrographs. Moreover, the inclusions become charged by the electron beam irradiation and the influence of charging on the micrographs collected by the Trinity detectors can be observed.

There are many possibilities how to affect the detected signal origin. Fig. 2 demonstrates effect of the specimen bias on detected signal. The SEs are shared by the T3 and T2 detectors and are not detected by the ETD when the specimen bias of -4kV is applied. Strong collimation of the signal electrons towards the optical axis is evident. The high-angle BSEs are collimated towards the optical axis and the T1 detector shows topographical contrast.

Significant effect of a working distance (WD) on the signal collected by the Trinity detectors and the ETD is shown in Fig. 3. For a short WD, the T3 detector collects mainly the slow secondary electrons (SEs) and positive charging of the spinel inclusions is clearly visible. For a long WD, the electrons originally detected by the T3 detector are shifted towards the T2. The T1 detector collects the backscattered electrons (BSEs) and the channeling and topographical contrast are superimposed on the material (“Z”) contrast at short WD. Inversely, the material contrast intensifies with increasing WD. Obviously, increasing WD leads to less effective collimation of the slow signal electrons into the final lens (by the A-tube electrostatic field) and the ETD detection efficiency was improved.

Insight into an extraordinary detection flexibility of the Trinity system enables us more effective characterization of material microstructure. Accurate knowledge about the signal received at each detector and possibility of its modification can be successfully used for tuning of desired contrast or suppression of undesirable information.

The presentation is based on results obtained from pioneering project commissioned by the New Energy and industrial Technology Development Organization (NEDO).

Figures:

Fig. 1 Schematic sketch of the Trinity system.

Fig. 2 Oxide inclusions embedded in steel visualized by the Trinity detectors and the ETD: specimen bias 0 kV and –4 kV. (EL= 1 keV, WD = 1 mm, A-tube bias = 8 kV)

Fig. 3 Effect of the WD on the contrast in the images simultaneously obtained at 1 keV by the Trinity detectors and the ETD. (A-tube bias 8 kV, SB 0 kV)

To cite this abstract:

Sarka Mikmekova, Haruo Nakamichi, Masayasu Nagoshi; Benefits of angular and energy separation of slow signal electrons in SEM. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/benefits-of-angular-and-energy-separation-of-slow-signal-electrons-in-sem/. Accessed: January 25, 2021
  • Tweet
  • Email
  • Print
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/benefits-of-angular-and-energy-separation-of-slow-signal-electrons-in-sem/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Pixelated STEM detectors: opportunities and challenges
  • Atomic relaxation in ultrathin fcc metal nanowires
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Connect with us

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2021 John Wiley & Sons, Inc. All Rights Reserved.
Wiley
loading Cancel
Post was not sent - check your email addresses!
Email check failed, please try again
Sorry, your blog cannot share posts by email.
This site uses cookies: Find out more.