EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

3D reconstruction of Euglena gracilis using serial block face scanning electron microscopy

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Life Sciences

Topic: Cell organisation and dynamics

Presentation Form: Poster

Corresponding Email:

Jana Nebesarova (1, 2), Eva Dobakova (3), Michal Petrov (4), Tomas Bily (1), Marie Vancova (1, 5)

1. Laboratory of Electron Microscopy, Biology Centre of CAS, Ceske Budejovice, République tchèque 2. Laboratory of Electron Microscopy, Faculty of Science, Charles University in Prague, Praha, République tchèque 3. Institute of Parasitology, Biology Centre of CAS, Ceske Budejovice, République tchèque 4. R&D Applications, Tescan Orsay Holding, a.s., Brno, République tchèque 5. Faculty of Science, University of South Bohemia , Ceske Budejovice, République tchèque

Keywords: Euglena gracilis, giant mitochondria, SBF-SEM, specimen preparation

Euglena gracilis is a unicellular fresh water photosynthetic flagellate at which a bleaching phenomenon was described. Using antibacterial compounds like quinolones and cumarins, the photosynthetic activity may be destroyed and results in irreversible elimination of chloroplasts. Beside the loss of chloroplasts in E. gracilis, damage and ultrastructural transformation of mitochondria leading to a formation of giant mitochondria has been also shown [1,2,3]. In this study, we used serial block face scanning electron microscopy (SBF-SEM) for 3D reconstruction of E.gracilis to see whether the giant mitochondria are inside the bleached non-photosynthetic mutant cells or they were just an artifact/myth caused during specimen preparation.  

For SBF-SEM, biological samples are standardly prepared according the protocol described by Deerinck et al. (2010) In this case, we needed the ultrastructure preservation of our sample as close as possible to the native state, therefore we decided to use high pressure freezing followed by the freeze substitution method. To increase the image contrast in backscatter electron imaging, we added soluble salts containing heavy metals in freeze substitution solutions. We tested four modified protocols in which we used various combinations of the following compounds: osmium tetroxide, thiocarbohydrazide, potassium ferricyanide, lead nitrate, uranyl acetate, phosphotungstic acid.   Resin embedding was done using low viscosity Spurr (EMS) at room temperature.

At first, the ultrathin sections were cut from polymerized blocks using the ultramicrotome (Leica EM UC6).  Sections were examined in transmission electron microscope (TEM, JEOL 1010) and the contrast of mitochondria was compared in recorded images of mutant cells prepared by modified and standard Deerinck protocols (Fig.1). The sample with the highest contrast was roughly trimmed by a razor blade and mounted on the stub using a superglue and conductive colloidal silver paint (EMS). Small pyramids with square block face in size appr. 100x100x100 µm were prepared using a diamond trimming tool (Diatome) or glass knife in the microtome.

The high resolution SEM (Tescan Maia3 XMU FEG) equipped with ultramicrotome (Gatan 3View2XP) in the microscope chamber was used for the collection of images recorded at the accelerating voltages 1.5 and 3.0 kV. More than 1000 slices with the thickness of either 30 or 50 nm were cut from sample pyramids with the oscillating diamond knife working at cutting speed 0.5 mm/s. To prevent the sample charging, the image acquisition was performed at the chamber pressure 50 Pa. Gaussian 3D filter in Image J software was applied to recorded images to reduce a noise. 3D model was created using automatic segmentation tool in the Amira software package.

The resulting 3D reconstructions did not prove the presence of giant mitochondria in the mutant cells. However SBF-SEM in the combination with the current methods of specimen preparation has proven to be the method of choice allowing the study of the distribution of cell organelles and their mutual position in the whole cell volume.

References:


Figures:

The comparison of the mitochondria contrast in mutant cells of E.gracilis stained by various ways during freeze substitution: A. OTO in acetone. B. UA and ferricyanide in acetone. C. OTO, UA and lead nitrate in methanol. D. OTO, UA and PTA in methanol.

To cite this abstract:

Jana Nebesarova, Eva Dobakova , Michal Petrov, Tomas Bily, Marie Vancova; 3D reconstruction of Euglena gracilis using serial block face scanning electron microscopy. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/3d-reconstruction-of-euglena-gracilis-using-serial-block-face-scanning-electron-microscopy/. Accessed: December 4, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/3d-reconstruction-of-euglena-gracilis-using-serial-block-face-scanning-electron-microscopy/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley