EMC Abstracts

Official abstracts site for the European Microscopy Congress

MENU 
  • Home
  • Meetings Archive
    • The 16th European Microscopy Congress 2016
  • Keyword Index
  • Your Favorites
    • Favorites
    • Login
    • Register
    • View and Print All Favorites
    • Clear all your favorites
  • Advanced Search

3D analytical investigation of melting at lower mantle conditions in the laser-heated diamond anvil cell

Abstract number:

Session Code:

Meeting: The 16th European Microscopy Congress 2016

Session: Materials Science

Topic: Geology and mineralogy, cultural heritage and archeology

Presentation Form: Oral Presentation

Corresponding Email:

Farhang Nabiei (1, 2), Marco Cantoni (2), James Badro (3, 1), Susannah Dorfman (4), Richard Gaal (1), Hélène Piet (1), Philippe Gillet (1)

1. Earth and Planetary Science Laboratory, EPFL, Lausanne, Suisse 2. Interdisciplinary Centre for Electron Microscopy, EPFL, Lausanne, Suisse 3. Institut de Physique du Globe de Paris, Sorbonne-Paris-Cité, Paris, France 4. Department of Geological Sciences, Michigan State University, East Lansing, Etats-Unis

Keywords: 3D, diamond anvil cell, energy-dispersive X-ray spectroscopy, Focused Ion Beam, transmission electron microscopy

Diamond anvil cell (DAC) is a unique tool to study materials under static high pressures up to several hundreds of GPa comparable to the pressures in the earth and planets interior. By using laser heating the temperature of the material inside the cell can be raised to several thousand degrees. This allows us to reach to the pressure and temperature conditions of deep mantle in laser heated diamond anvil cell (LHDAC). On the other hand small heated volume of the sample adjacent to the high thermally conductive diamonds results in large temperature and pressure gradients which affect the phase transformation and chemical distribution in LHDAC.

To fully understand the phase assemblages and equilibrium inside the LHDAC, it is essential to use three dimensional analytical characterization methods. As a proxy to deep mantle composition, San Carlos olivine has been chosen as a starting material for this study. To observe the effect of pressure and heating time, five samples are prepared. Three samples were melted at ~3000 K and at 45 GPa for durations of 1, 3 and 6 minutes. Other two samples were melted for 3 minutes at 30 GPa and 71 GPa. Each sample was then sliced by focused ion beam (FIB) with slice thickness of 50-100 nm. A secondary electron image and an energy dispersive x-ray (EDX) map were acquired from each slice by scanning electron microscope (SEM) in a dual beam FIB instrument. Half of the heated area in each sample was used for 3D FIB tomography and the other half is used to extract a 100 nm thick thin section for subsequent analysis by analytical transmission electron microscope (TEM). TEM is used to obtain accurate EDX maps from the phases. Also, the structure of crystalline phases has been characterized by electron diffraction technique.

3D reconstruction of SEM EDX maps (figure 1) shows that the heated area is roughly spherical and it consists of three main regions in all samples which correspond to ferropericlase (Mg­­, Fe)O (Fp), perovskite-structured bridgmanite (Mg,Fe)SiO3 (Brg) and iron-rich core. The bulk of the heated area is surrounded by ferropericlase shell. Then, we find a thick region of bridgmanite phase just inside the Fp shell and in the center lies an iron-rich core. In addition, in 45 GPa sample heated for 3 minutes we start to see another (Mg, Fe)O phase (Mw) around the core which is more iron-rich than the Fp shell. In the 45 GPa sample heated for 6 minutes this iron-rich oxide (Mw) entirely surrounds the iron-rich core. TEM analysis shows a third and even more iron-rich (Mg, Fe)O phase forming a thin layer (~70nm) between the Mw and the core. The core is getting richer in iron by increasing the pressure or heating time and its structure varies among the samples. For instance, in 45 GPa sample heated for 1 minute the core has eutectoid structure with iron nanoparticles distributed in it (figure 2) while in the 45 GPa sample heated for 6 minute we have a granular structure with the higher content of iron in the center of grains (figure 3). Moreover, we can see narrow Fp veins connecting the Fp shell to the iron-rich core in all of the samples, particularly in 71 GPa sample these veins are numerous and thick. In fact, they occupy a substantial part of Brg region in this sample.

Figures:

Figure 1- 3D reconstruction of the phases in the 45GPa sample heated for 1 minute. An EDX map from a central slice is shown in top right were Fe, Si and Mg intensity maps are used as red, green and blue channels.

Figure 2- HAADF image and EDX map from the center of 45 GPa sample heated for 1 minute.

Figure 3- HAADF image and EDX map from the center of 45 GPa sample heated for 6 minute.

To cite this abstract:

Farhang Nabiei, Marco Cantoni, James Badro, Susannah Dorfman, Richard Gaal, Hélène Piet, Philippe Gillet; 3D analytical investigation of melting at lower mantle conditions in the laser-heated diamond anvil cell. The 16th European Microscopy Congress, Lyon, France. https://emc-proceedings.com/abstract/3d-analytical-investigation-of-melting-at-lower-mantle-conditions-in-the-laser-heated-diamond-anvil-cell/. Accessed: December 2, 2023
Save to PDF

« Back to The 16th European Microscopy Congress 2016

EMC Abstracts - https://emc-proceedings.com/abstract/3d-analytical-investigation-of-melting-at-lower-mantle-conditions-in-the-laser-heated-diamond-anvil-cell/

Most Viewed Abstracts

  • mScarlet, a novel high quantum yield (71%) monomeric red fluorescent protein with enhanced properties for FRET- and super resolution microscopy
  • 3D structure and chemical composition reconstructed simultaneously from HAADF-STEM images and EDS-STEM maps
  • Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy
  • Pixelated STEM detectors: opportunities and challenges
  • Developments in unconventional dark field TEM for characterising nanocatalyst systems

Your Favorites

You can save and print a list of your favorite abstracts by clicking the “Favorite” button at the bottom of any abstract. View your favorites »

Visit Our Partner Sites

The 16th European Microscopy Congress

The official web site of the 16th European Microscopy Congress.

European Microscopy Society

European Microscopy Society logoThe European Microscopy Society (EMS) is committed to promoting the use and the quality of advanced microscopy in all its aspects in Europe.

International Federation of Societies for Microscopy

International Federation of Societies for Microscopy logoThe IFSM aims to contribute to the advancement of microscopy in all its aspects.

Société Française des Microscopies

Société Française des MicroscopiesThe Sfµ is a multidisciplinary society which aims to improve and spread the knowledge about Microscopy.

Imaging & Microscopy
Official Media Partner of the European Microscopy Society.

  • Help & Support
  • About Us
  • Cookie Preferences
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2023 John Wiley & Sons, Inc. All Rights Reserved.
Wiley